Скрытая реальность. Параллельные миры и глубинные законы космоса - Грин Брайан. Страница 13
Инфляционная космология видоизменяет теорию Большого взрыва, дополняя её интенсивной вспышкой невероятно быстрого расширения в течение первых мгновений жизни Вселенной. Мы увидим, что такая модификация оказывается существенной для объяснения некоторых свойств реликтового излучения, которые иначе объяснить не удаётся. И более того, инфляционная космология играет ключевую роль в нашем повествовании, потому что в течение последних нескольких десятилетий учёные постепенно осознали, что наиболее убедительные варианты теории приводят к огромному количеству параллельных вселенных, коренным образом изменяя характер реальности.
Следы жаркого начала
Георгий Гамов, советский физик, иммигрировавший в США, за два метра ростом, известен благодаря своим открытиям в квантовой и ядерной физике в начале XX века. У него была непростая судьба, но он был жизнерадостный и находчивый (в 1932 году он и его жена хотели сбежать из Советского Союза за границу, пытаясь переплыть Чёрное море на байдарке с запасом шоколада и коньяка; когда плохая погода заставила беглецов вернуться на берег, Гамов заговорил зубы представителям властей, рассказав им историю про неудавшийся научный эксперимент в открытом море). В 1940-х годах, успешно перебравшись за железный занавес (по суше, без особых запасов шоколада) и обосновавшись в университете Вашингтона в Сент-Луисе, Гамов занялся космологией. Исследования, проведённые им при содействии своего феноменально талантливого аспиранта Ральфа Альфера, прояснили и оживили картину первых мгновений жизни Вселенной, по сравнению с ранними работами Фридмана (который был учителем Гамова в бытность его в Ленинграде) и Леметра. С учётом небольших современных дополнений картина, нарисованная Гамовым и Альфером, выглядела следующим образом.
Сразу после рождения, будучи невероятно горячей и плотной, Вселенная пребывала в угаре активной деятельности. Пространство быстро расширялось и остывало, что приводило к образованию частиц из первичной плазмы. В течение первых трёх минут температура быстро падала, однако оставалась достаточно высокой, чтобы Вселенная была похожа на космическую ядерную печь, где образовывались простейшие атомные ядра: водород, гелий, небольшие количества лития. По прошествию ещё нескольких минут температура упала до 108 градусов по Кельвину, что примерно в 10 000 раз выше температуры поверхности Солнца. Несмотря на то, что согласно привычным стандартам такая температура крайне высока, её уже не хватает для дальнейшего поддержания ядерных процессов, и, начиная с этого момента, интенсивность движения частиц сильно падает. Последующие миллиарды лет почти ничего не происходило, пространство просто продолжало расширяться, а плазма частиц продолжала остывать.
Затем, примерно 370 000 лет спустя, когда Вселенная остыла приблизительно до 3000 K, что составляет примерно половину от температуры поверхности Солнца, однообразие космических будней было кардинальным образом нарушено. На тот момент пространство было заполнено плазмой электрически заряженных частиц, в основном протонов и электронов. Поскольку электрически заряженные частицы обладают характерной особенностью отбрасывать частицы света — фотоны, то первичная плазма была непрозрачной; фотоны, непрестанно отталкиваемые электронами и протонами, давали рассеянное свечение, похожее на свет фар автомобиля в плотном тумане. Но как только температура опустилась ниже 3000 K, быстрые электроны и ядра замедлились и стали объединяться в атомы; электроны, захваченные атомными ядрами, сели на орбиты. В этом состояло главное изменение. Так как заряды протонов и электронов равны по величине, но противоположны друг другу, образуемые ими атомы электрически нейтральны. А поскольку фотоны проходят через вещество, состоящее из электрически нейтральных компонент, не хуже, чем вода через сито, образование атомов привело к тому, что космический туман рассеялся, и световое эхо Большого взрыва вырвалось наружу. С тех самых пор первичные фотоны пронизывают всё пространство.
Всё так, но важно сделать одно предостережение. Хотя электрически заряженные частицы больше не отбрасывают фотоны то туда, то сюда, частицы света оказались подвержены другому важному воздействию. При расширении пространства содержимое становится более разреженным и остывает, в том числе и фотоны. Однако, в отличие от частиц материи, фотоны не замедляются при остывании; являясь частицами света, они всегда летят со световой скоростью. Вместо этого при остывании колебательные частоты фотонов уменьшаются, что приводит к изменению цвета. Фиолетовые фотоны становятся голубыми, затем зелёными, жёлтыми, красными, после чего становятся инфракрасными (как те, что видны в приборе ночного видения), затем микроволновыми (как те, что разогревают пищу в микроволновой печи) и, наконец, становятся радиоволнами.
Гамов впервые понял, а Альфер и его соавтор Роберт Герман тщательным образом проделали вычисления, что если теория Большого взрыва верна, то пространство должно быть повсеместно наполнено остаточными фотонами с момента рождения Вселенной, разлетающимися во всех возможных направлениях. Колебательные частоты остаточных фотонов определяются тем, насколько Вселенная расширилась за последние миллиарды лет с момента их высвобождения. Подробные математические вычисления показали, что фотоны должны были остыть почти до абсолютного нуля и иметь частоты в микроволновой части спектра. По этой причине они называются космическим микроволновым фоновым (реликтовым) излучением [8].
Не так давно я перечитывал статьи Гамова, Альфера и Германа конца 1940-х годов, в которых были анонсированы и объяснены эти выводы. Эти статьи являются жемчужинами теоретической физики. Техническая сторона дела вряд ли требует подготовки выше уровня знаний первокурсников, в то время как получаемые результаты — выдающиеся. Авторы пришли к выводу, что мы целиком и полностью окружены реликтовыми фотонами, завещанными нам с момента бурного рождения Вселенной.
Теперь можно только удивляться, почему эти статьи остались незамеченными. Это произошло в основном потому, что они были написаны в тот период, когда в науке доминировали квантовая и ядерная физика. Космологии ещё предстояло стать точной наукой, и поэтому физическое сообщество было менее восприимчиво к тому, что, как казалось, лежало на периферии теоретической мысли. Не в последнюю очередь судьба этих статей объясняется необычным шутливым стилем самого Гамова (как-то раз он изменил авторство одной из статей, написанной совместно с Альфером, и включил туда своего друга, будущего нобелевского лауреата Ганса Бете, только для того, чтобы в заголовке стояло Альфер, Бете, Гамов, что звучало как первые три буквы греческого алфавита), это привело к тому, что некоторые физики воспринимали его не так серьёзно, как он того заслуживал. Как они не старались, Гамов, Альфер и Герман так и не смогли заинтересовать кого-либо в своих результатах, не говоря уж о том, чтобы убедить астрономов направить значительные усилия на поиск предсказанного ими реликтового излучения. Статьи были быстро забыты.
В самом начале 1960-х годов, ничего не зная о более ранних работах, принстонские физики Роберт Дикке и Джим Пиблс, путём похожих рассуждений, пришли к такому же выводу: Большой взрыв должен был привести к вездесущему фоновому излучению, наполняющему пространство. {15} Однако, в отличие от группы Гамова, Дикке был известным экспериментатором, и ему не надо было никого убеждать начать экспериментальные поиски. Этим он мог заняться и сам. Вместе со своими студентами Давидом Вилкинсоном и Питером Роллом Дикке разработал экспериментальную схему обнаружения реликтовых фотонов, оставшихся после Большого взрыва. Но прежде чем принстонские учёные приступили к осуществлению своих планов, прозвучал один из наиболее знаменитых телефонных звонков в истории науки.