Скрытая реальность. Параллельные миры и глубинные законы космоса - Грин Брайан. Страница 28
Несмотря на благословение самого Эйнштейна, последующие исследования показали, что программа Калуцы — Клейна сталкивается с некоторыми препятствиями, самым трудным из которых является невозможность встроить детальные свойства частиц материи, таких как электрон, в математическую структуру. В течение двух десятилетий предлагались и отвергались искусные способы обойти эту проблему, наравне с всевозможными обобщениями и модификациями исходного предложения Калуцы — Клейна, однако поскольку не было предложено ни одного подхода, свободного от этих недостатков, то к середине 1940-х годов идея объединения через дополнительные измерения практически была забыта.
Спустя тридцать лет возникла теория струн. Математический аппарат теории струн не просто разрешал существование во Вселенной дополнительных измерений, он требовал их присутствия. Таким образом, в теории струн возник новый, готовый к использованию формализм для привлечения программы Калуцы — Клейна. На вопрос «если теория струн является долгожданной искомой единой теорией, тогда почему мы не видим требуемые дополнительные измерения?» до нас эхом, сквозь десятилетия, доносится ответ теории Калуцы — Клейна, что эти измерения находятся вокруг нас, но слишком малы, чтобы их увидеть. Теория струн возродила программу Калуцы — Клейна, и к середине 1980-х годов учёные во всём мире воодушевлённо полагали, что это только вопрос времени — самого близкого времени, как говорили наиболее рьяные сторонники, — когда теория струн приведёт к полному описанию всей материи и взаимодействий.
В первые годы теории струн развитие происходило настолько быстро, что уследить за всеми новостями было практически невозможно. Во многом похожая атмосфера царила в 1920-х годах, когда перед учёными распахнул свои двери мир квантовых явлений. При таком возбуждении понятно, что некоторые теоретики заговорили о скорой революции в решении основных проблем фундаментальной физики: слиянии гравитации и квантовой механики, объединении всех сил в природе, объяснении свойств материи, определении числа пространственных измерений, прояснении сингулярностей чёрных дыр, выяснении происхождения Вселенной. Но более умудрённые физики полагали, что такие надежды преждевременны. Теория струн настолько насыщена, обширна и математически трудна, что спустя почти три десятилетия после первой эйфории современные учёные одолели лишь часть исследовательского пути. С учётом того, что мир квантовой гравитации в сотни миллиардов миллиардов раз меньше чем всё, что мы сегодня можем экспериментально измерить, дорога будет длинная, даже по самым скромным оценкам.
В какой её части мы находимся? В конце главы я кратко опишу самые современные достижения в некоторых ключевых областях (оставляя в стороне вопрос о параллельных вселенных, что будет более подробно рассмотрено в последующих главах), дам оценку успехам и нерешённым проблемам.
Теория струн и свойства частиц
Один из самых основных вопросов всей физики стоит так: почему частицы, которые наблюдаются в природе, являются именно такими, а не какими-нибудь другими? Например, почему электрон обладает именно такой массой, а u-кварк имеет именно такой электрический заряд? Интерес к этим вопросам не просто академический, он отражает очень важный факт, что упоминался ранее. Если бы у частиц были другие свойства — например, будь электрон чуть тяжелее или легче, или электростатическое отталкивание между электронами сильнее или слабее, — ядерные процессы, питающие звёзды, подобные нашему Солнцу, были бы нарушены. Вселенная без звёзд была бы совсем другой. [23] Очевидно, что без солнечного света и тепла не возникла бы сложная цепочка событий, приведшая к возникновению жизни на Земле.
Поэтому возникает фундаментальный вопрос: как с помощью ручки, бумаги и, возможно, компьютера, а также руководствуясь нашим пониманием законов природы, вычислить свойства частиц и получить результаты, которые согласуются с экспериментальными данными. Если нам удастся ответить на этот вопрос, это станет одним из самых важных шагов на пути к пониманию того, почему Вселенная такая как она есть.
В рамках квантовой теории поля ответа на этот вопрос нет и не может быть. В квантовой теории поля измеренные свойства частиц выступают в качестве исходных данных — на их основе строится и определяется сама теория, — поэтому теория успешно работает с широким спектром значений масс и зарядов. [24] Если вообразить мир, где масса электрона или его заряд будут меньше или больше, чем в нашем, то квантовая теория поля опишет явления в таком мире, не моргнув глазом; для этого всего лишь надо будет подстроить значения параметров в уравнениях теории.
Сможет ли теория струн справиться с этим лучше?
Одна из самых красивых черт струнной теории (то, что более всего меня поразило, когда я приступил к её изучению) состоит в том, что свойства частиц определяются размером и формой дополнительных измерений. Поскольку струны очень малы, они вибрируют не только в трёх привычных больших измерениях, но и в малых, свёрнутых измерениях. Подобно тому как поток воздуха, проходящий сквозь духовой инструмент, приобретает колебательное движение, характер которого определяется геометрической формой инструмента, колебания струн в струнной теории определяются формой скрученных измерений. Вспоминая, что вибрационное поведение струн определяет свойства частиц, такие как массу и электрический заряд, мы видим, что эти свойства диктуются геометрией дополнительных измерений.
Поэтому если достоверно известно, как выглядят дополнительные измерения в теории струн, то можно легко предсказать любые свойства вибрирующих струн и, следовательно, все свойства элементарных частиц, порождённых колебаниями струны. Трудность, как и раньше, в том, что никто не знает, какова точная геометрическая форма дополнительных измерений. Уравнения теории струн накладывают математические ограничения на геометрию дополнительных измерений и требуют, чтобы они принадлежали частному классу так называемых пространств Калаби — Яу (на математическом жаргоне многообразия Калаби — Яу), названных в честь математиков Эудженио Калаби и Шин-Туна Яу, которые изучали их свойства задолго до осознания важности их роли в теории струн (рис. 4.6). Проблема в том, что нет какой-то одной, выделенной формы Калаби — Яу. Наоборот, подобно музыкальным инструментам, эти пространства имеют разные размеры и контуры. И так же как разные музыкальные инструменты издают разные звуки — дополнительные измерения, различающиеся по размерам и по форме (а также по другим параметрам, с которыми мы встретимся в следующей главе), порождают разные вибрации струн и, следовательно, разные наборы свойств частиц. Отсутствие однозначной спецификации для дополнительных измерений является главным камнем преткновения, который не позволяет струнным теоретикам делать конкретные предсказания.
Рис. 4.6. Крупный план пространственной структуры в теории струн, где показан пример дополнительных измерений, закрученных в одно из пространств Калаби — Яу. Подобно набивке на основе ковра, пространство Калаби — Яу прикреплено в каждой точке трёх привычных больших измерений (представленных двумерной решёткой), однако для простоты восприятия эти пространства размещены только в узлах решётки
Когда я начал заниматься теорией струн в середине 1980-х годов, было известно небольшое количество пространств Калаби — Яу, поэтому можно было надеяться проанализировать каждое из них и соотнести с известной физикой. Моя диссертация стала одним из самых первых шагов в этом направлении. Спустя несколько лет, когда я стал постдоком (под руководством того самого Яу из Калаби — Яу), число пространств Калаби — Яу возросло до нескольких тысяч, что стало серьёзной задачей для обстоятельного изучения — но ведь для этого и существуют студенты! Время шло и число страниц в каталоге пространств Калаби — Яу только увеличивалось; как будет видно в главе 5, теперь их больше чем песчинок на пляже. На всех пляжах вместе взятых. Даже представить невозможно. И речи быть не может о том, чтобы математически рассмотреть каждое на роль дополнительных измерений. Поэтому струнные теоретики продолжают поиск математической подсказки, которая позволит выделить из всех возможных пространств Калаби — Яу то самое, единственное. Пока это никому не удалось.