Скрытая реальность. Параллельные миры и глубинные законы космоса - Грин Брайан. Страница 53
Можем ли мы это? Может ли включение в теорию других вселенных привести к проверяемым предсказаниям, даже если эти вселенные находятся за пределами досягаемости экспериментов и наблюдений? Давайте рассматривать этот ключевой вопрос шаг за шагом, следуя от «принципов» к «практике», как было оглашено выше.
I. Предсказания в мультивселенной: Если вселенные, составляющие мультивселенную, недоступны, могут ли они давать осмысленный вклад в предсказания?
Те учёные, которые не принимают теорию мультивселенной, смотрят на эту деятельность как на признание поражения, на полное отступление от великой цели постижения того, почему Вселенная, какой мы её наблюдаем, обладает именно такими свойствами. Я могу понять такие чувства, потому что я был среди тех, кто в течение десятилетий пытался материализовать обещания, даваемые теорией струн, и вычислить все фундаментальные наблюдаемые свойства Вселенной, включая значения всех констант в природе. Если допустить, что мы являемся частью мультивселенной, в которой некоторые, а может быть и все константы изменяются от одной вселенной к другой, то следует признать, что подобная цель является ошибочной. Если фундаментальные законы разрешают, скажем, константе связи электромагнитного взаимодействия принимать в мультивселенной самые разные значения, то сама задача вычисления определённого значения константы связи столь же бессмысленна, как попросить пианиста подобрать какую-то одну ноту.
Здесь возникает вопрос: если характеристики могут варьироваться, означает ли это, что мы теряем способность предсказать (или объяснить) значения, присущие именно нашей Вселенной. Не обязательно. Даже если мультивселенная исключает единственность, всё равно можно сохранить в какой-то мере предсказательную силу. Правда, теперь это становится делом статистики.
Поговорим для наглядности о собаках. Они все разные по весу. Есть очень маленькие собаки, например чихуахуа, весящие пару килограммов; есть очень крупные собаки, такие как английский мастиф, вес которых может зашкаливать за 100 килограммов. Если бы я попросил вас предсказать вес собаки, которая вам встретится на улице, то, возможно, наилучшим выходом для вас было бы назвать любое число в указанном выше диапазоне. Однако, обладая чуть большей информацией, вы смогли бы назвать вес точнее. Если вам предоставят данные по собакам, живущим в вашем районе, например, сколько человек держат ту или иную породу, каким весом обладает та или иная порода, и даже скажут, сколько ежедневных прогулок необходимо собакам каждой породы, вы сможете более точно оценить вес собаки, которая наиболее вероятно вам встретится на улице.
Вряд ли это будет точным предсказанием; как правило, в статистике такого не происходит. Однако, опираясь на данные о распределении собак, вы сможете дать гораздо более точный ответ, чем просто назвать произвольное число с потолка. Если распределение собак в вашем районе имеет некую конкретную специфику, например, 80 процентов собак составляют лабрадоры, средний вес которых 27 килограмм, а остальные 20 процентов приходятся на породы от шотландского терьера до пуделей, средний вес которых составляет 13 килограмм, то вы с большой точностью попадёте в точку, назвав вес в диапазоне от 25 до 30 килограмм. Конечно же, вам может встретиться пушистый ши-тцу, но это маловероятно. Если распределение ещё более скошено, ваши предсказания могут стать точнее. Если 95 процентов собак вокруг вас — это лабрадоры весом 27 килограмм, то можно уверенно предсказать, что вам встретится именно лабрадор.
Аналогичный статистический подход можно применить к мультивселенной. Представьте, что вы изучаете теорию мультивселенной, в которой свойства различных вселенных находятся в широком диапазоне — различные значения констант взаимодействий, свойств частиц, космологических постоянных и так далее. Также представьте, что космологический процесс образования этих вселенных (как, например, образование пузырьков в ландшафтной мультивселенной) достаточно хорошо понят, поэтому мы можем вычислить распределение вселенных с различными свойствами по всей мультивселенной. Наличие такой информации вполне может привести к значимым открытиям.
Для наглядности предположим, что вычисления дают особенно простое распределение: некоторые физические свойства широко варьируются от вселенной к вселенной, а другие остаются неизменными. Например, представим, что вычисления говорят, что должен быть некий набор частиц, общих для всех вселенных в мультивселенной, массы и заряды которых одинаковы в каждой из вселенных. Подобное распределение приводит к совершенно однозначным предсказаниям. Если эксперименты, проведённые в нашей выделенной Вселенной, не обнаружат предсказанного набора частиц, то соответствующая теория, мультивселенная и всё остальное должны быть отброшены. Таким образом, если мы знаем распределение, то гипотеза мультивселенной становится фальсифицируемой. Наоборот, если в наших экспериментах предсказанные частицы будут обнаружены, это укрепит нашу в веру в правильность выбранной теории. {61}
В качестве другого примера представьте мультивселенную, космологическая постоянная в которой варьируется в огромном диапазоне значений, но крайне неоднородно (рис. 7.1). На графике представлена доля вселенных внутри мультивселенной (вертикальная ось) с заданным значением космологической постоянной (горизонтальная ось). Если мы — часть такой мультивселенной, то загадка космологической постоянной имеет принципиально другой характер. Большинство вселенных в таком сценарии обладают космологической постоянной, значение которой близко к измеренному значению в нашей Вселенной; поэтому, хотя диапазон возможных значений огромен, скошенное распределение означает, что наблюдаемое нами значение ничем не примечательно. В такой мультивселенной удивляться тому, что космологическая постоянная в нашей Вселенной имеет значение 10−123, следует не больше, чем встрече с лабрадором весом в 27 килограмм. Каждое из этих событий наиболее вероятно при подходящем распределении.
Рис. 7.1. Распределение космологической постоянной в гипотетической мультивселенной, показывающее, как очень скошенное распределение позволяет объяснить загадочные наблюдательные данные
Теперь рассмотрим другую ситуацию. Представим, что в некоторой теории мультивселенной значения космологической постоянной варьируются в широком диапазоне, но в отличие от предыдущего примера варьируются однородно; количество вселенных с заданным значением космологической постоянной сравнимо с количеством вселенных с любым другим значением. Допустим также, что при тщательном математическом анализе теории выяснилось неожиданное свойство такого распределения: оказалось, что во вселенных со значением космологической постоянной в наблюдаемом нами диапазоне, всегда существуют частицы, массы которых, скажем, в 5000 раз превосходят массу протона — они слишком тяжёлые, чтобы их можно было наблюдать на ускорителях XX века, однако их масса вполне вписывается в диапазон ускорителей XXI века. В силу такой тесной связи между этими двумя физическими свойствами эта теория мультивселенной также является фальсифицируемой. Если у нас не получится обнаружить предсказанные тяжёлые частицы, то гипотеза будет отброшена; а открытие таких частиц наоборот усилит нашу убеждённость в её правильности.
Я хочу подчеркнуть, что эти сценарии умозрительны. Я привёл их в качестве примера, потому что они прекрасно демонстрируют возможности для научной идеи и её проверки в рамках концепции мультивселенной. Ранее я высказывал мнение, что если теория мультивселенной приводит к проверяемым свойствам помимо предсказания существования других вселенных, тогда, в принципе, возможно найти в её поддержку весомые аргументы, даже если другие вселенные недоступны. Примеры, приведённые выше, служат тому подтверждением. Для таких типов мультивселенных ответ на искомый вопрос будет безоговорочно положительным.