Скрытая реальность. Параллельные миры и глубинные законы космоса - Грин Брайан. Страница 72
При разработке математических методов систематического пожертвования подробностями в пользу более общего понимания физики изобрели широкий диапазон методов и развили ряд глубоких понятий. Одно из таких понятий, с которым мы кратко познакомились в предыдущих главах — это энтропия. Энтропия изначально была введена в середине девятнадцатого столетия для количественного описания рассеяния энергии в двигателях внутреннего сгорания, но современная точка зрения, введённая Людвигом Больцманом в 1870-х годах, такова, что энтропия является характеристикой того, насколько тонко упорядочена — или нет — данная система, для того чтобы иметь такой вид, какой она имеет.
Чтобы прочувствовать это, представьте сценку, в которой некий парень, Феликс, в ярости кричит, что в их дом проникли воры. «У нас всё переворошили!» — в гневе говорит он своему другу Оскару. Оскар отмахивается — он знает, что у Феликса бывают приступы подозрительности. Чтобы успокоить Феликса, Оскар распахивает дверь в свою комнату, где валяется разбросанная повсюду одежда, остатки пиццы и пустые банки из-под пива. «Выглядит как обычно», — рявкает он. Феликс не обращает на это внимания. «Конечно же, она выглядит как обычно — свинарник и после вторжения остаётся свинарником. Но взгляни на мою комнату!» И он открывает свою дверь. «Всё переворошили…» — хмыкает Оскар. — «Да она чище, чем неразбавленный виски!» «Да, чище. Но вторжение не осталось незамеченным. Смотри, вот баночки с витаминами — теперь они не выстроены в порядке уменьшения размера баночек. А сборник сочинений Шекспира? Не в алфавитном порядке! А ящик для носков? Посмотри на это — чёрные носки вперемешку с синими! Я тебе говорю, у нас всё переворошили. Это совершенно очевидно!»
Если не обращать внимания на истерику Феликса, данная ситуация подчёркивает простой, но существенный момент. Если что-то находится в большом беспорядке, как комната Оскара, то при большом количестве всяких разных перестановок содержащихся в нём составных частей общий вид остаётся прежним. Соберите двадцать шесть мятых рубашек, валяющихся на кровати, на полу, в гардеробе, и снова разбросайте их повсюду, разбросайте заново сорок две пустые банки из-под пива — и квартира всё равно будет выглядеть по-прежнему. Но когда что-то очень сильно упорядочено, как квартира Феликса, даже небольшая перемена становится заметной.
Это различие лежит в основе математического определения энтропии, данного Больцманом. Возьмите любую систему и подсчитайте число способов, которыми её компоненты могут быть переставлены, сохраняя при этом общий макроскопический вид. [50] Если есть большое число таких перестановок, то энтропия высока: система находится в сильном беспорядке. Если число таких перестановок мало, энтропия низкая: система высоко упорядочена (или, эквивалентно, имеет малый беспорядок).
В качестве более привычного примера рассмотрим контейнер с паром и куб изо льда. Будем рассматривать только их совокупные макроскопические свойства, которые можно наблюдать или измерять, не зная при этом детального состояния составляющих их молекул. Если опустить и вынуть руку из пара, то вы перемешаете между собой миллиарды молекул H2O, но при этом пар будет выглядеть столь же однородным, как и ранее. Но измените случайным образом положения и скорости многих молекул в куске льда, и результат вы увидите незамедлительно — кристаллическая структура льда будет разрушена. Появятся трещины и сколы. Пар, со случайно летающими по контейнеру молекулами H2O, обладает высокой степенью беспорядка; лёд, молекулы H2O которого расположены регулярным образом в кристаллической решётке, высоко упорядочен. Энтропия пара высока (много перестановок не приведут к изменению его вида); энтропия льда низкая (только небольшое количество перестановок не приведёт к изменению его вида).
Оценивая чувствительность макроскопического облика системы к её микроскопическому устройству, энтропия является естественным понятием в математическом формализме, который описывает совокупные физические свойства системы. Второй закон термодинамики развивает эту мысль количественным образом. Он устанавливает, что со временем полная энтропия системы будет возрастать. [51] Чтобы понять, почему так происходит, достаточно самых элементарных представлений о вероятности и статистике. По определению, конфигурация с высокой энтропией может реализоваться посредством большего числа микроскопических перестановок, чем конфигурация с меньшей энтропией. По мере эволюции системы она с огромной долей вероятности оказывается в состоянии с высокой энтропией, потому что, попросту говоря, таких состояний больше, чем остальных. Значительно больше. При выпекании хлеба вы чувствуете его запах по всему дому, потому что существует на триллионы больше конфигураций молекул, вылетающих из хлеба, таких, что они заполняют однородно весь дом, распространяя аромат свежевыпеченного хлеба, чем конфигураций, в которых молекулы плотно собираются в углу кухни. Случайные движения разогретых молекул почти наверняка будут направлены так, что молекулы сформируют одну из многочисленных распределённых по всему дому конфигураций, а не образуют одну из немногих скучкованных в углу конфигураций. Таким образом, набор молекул переходит от низкой энтропии к высокой, и в этом состоит действие Второго закона.
Эта идея универсальна. Бьющееся стекло, гаснущая свеча, расплывающиеся чернила, распространяющийся запах духов: это разные процессы, но их статистическое рассмотрение одинаково. В каждом из них порядок переходит в беспорядок, и это происходит потому, что есть масса способов создать беспорядок. Красота такого анализа — понимание этого вызвало моё самое восторженное «Вот это да!» в процессе моего физического образования — состоит в том, что не теряясь в микроскопических деталях, у нас есть ведущий принцип для объяснения, почему огромное количество явлений происходят так, а не иначе.
Следует отметить, что будучи по своей природе статистическим, Второй закон не утверждает, что энтропия не может уменьшиться, однако такое событие крайне маловероятно. Молекулы только что добавленного в чашку кофе молока могут, в результате своих случайных движений, объединиться в плавающую статуэтку Санта Клауса. Но не дождётесь. Плавающий Санта из молока имеет очень низкую энтропию. Если переместить несколько миллиардов молекул, вы увидите, что у Санты пропала голова или рука, или он растёкся в абстрактный белый завиток. По сравнению с этим конфигурация, в которой молекулы молока однородно распределены по чашке, имеет значительно более высокую энтропию: огромное число перегруппировок по-прежнему выглядит как обычный кофе с молоком. Тогда, с огромной долей вероятности добавленное в ваш чёрный кофе молоко придаст ему однородный коричневатый оттенок, в котором трудно будет разглядеть очертания Санты. Аналогичные рассуждения справедливы для огромного количества переходов от высокой к низкой энтропии, так что кажется, что Второй закон несокрушим.
Второй закон и чёрные дыры
Вернёмся теперь к взглядам Уилера на чёрные дыры. В начале 1970-х годов Уилер заметил, что когда чёрные дыры выплывают на сцену, Второй закон начинает сдавать свои позиции. По-видимому, наличие близлежащей чёрной дыры даёт готовый и надёжный способ уменьшить общую энтропию. Поместите в чёрную дыру любую изучаемую вами систему — битое стекло, потухшую свечку, расплывшиеся чернила. Так как ничего не может покинуть её пределы, беспорядок в системе окажется, по-видимому, навсегда исчезнувшим. Возможно, что такой подход несовершенен, но кажется, он легко понизит энтропию, окажись у вас под рукой чёрная дыра. Многие посчитали, что Второй закон столкнулся с достойным соперником.
Но студента Бекенштейна это не убедило. Возможно, предложил Бекенштейн, энтропия не пропадает в чёрной дыре, а просто каким-то образом в неё трансформируется. Кроме того, никто не утверждал, что поглощая пыль и звёзды, чёрные дыры приводят к нарушению Первого закона термодинамики, сохранению энергии. Наоборот, уравнения Эйнштейна показывают, что при поглощении вещества чёрная дыра становится больше и тяжелее. Энергия может перераспределиться, часть из неё упадёт в чёрную дыру, а часть останется снаружи, но общее количество сохранится. Может быть, предложил Бекенштейн, эта же идея применима и к энтропии. Часть энтропии остаётся снаружи чёрной дыры, а другая часть падает внутрь, но ничего не исчезает бесследно.