Скрытая реальность. Параллельные миры и глубинные законы космоса - Грин Брайан. Страница 8
Наконец, ломтик картофельных чипсов «Принглс», если его бесконечно продолжить во все стороны (это несколько труднее изобразить), даёт представление об ещё одной однородной фигуре, про которую математики говорят, что она имеет постоянную отрицательную кривизну. Это означает, что ваше отражение в любой точке зеркальной чипсины будет выглядеть сжатым внутрь.
К счастью, эти описания двумерных однородных фигур без усилий расширяются на интересующий нас случай трёхмерного космического пространства. Положительная, отрицательная или нулевая кривизна — однородное раздувание, однородное сжатие или отсутствие искажений — с тем же успехом характеризуют трёхмерные однородные формы. В действительности нам повезло дважды, поскольку хотя трёхмерные формы очень трудно изобразить (представляя себе форму, наше сознание помещает её в некое окружение — аэроплан в пространстве, планета в пространстве, — но когда дело доходит до пространства, нет никакого окружения, в котором содержалось бы само пространство), трёхмерные однородные формы являются столь точными математическими аналогами своих двумерных родственников, что мы ничего не потеряем, когда станем делать то же, что делает большинство физиков, — мысленно использовать двумерные примеры.
В приведённой ниже таблице я перечислил возможные варианты формы пространства, подчеркнув, что одни из них имеют конечную протяжённость (сфера, экран компьютерной игры), а другие — бесконечную (бесконечный стол и бесконечная чипсина). Таблица 2.1 не является полной. Существуют другие возможные формы, которые носят загадочные названия вроде бинарного тетраэдрального пространства и додекаэдрального пространства Пуанкаре, также имеющие однородную кривизну; я не включил их сюда, поскольку их сложнее наглядно изобразить с помощью повседневных предметов. Они могут быть построены, если подходящим образом нарезать и скомпоновать уже знакомые пространства из нашего списка, так что табл. 2.1 в действительности даёт вполне представительную выборку. Однако все эти подробности второстепенны для нашего ключевого вывода: требование однородности космоса, отражённое в формулировке космологического принципа, существенным образом ограничивает набор возможных форм вселенной. Одни из этих форм имеют бесконечную пространственную протяжённость, другие — нет. {9}
Таблица 2.1. Возможные варианты формы космического пространства, которые находятся в согласии с космологическим принципом — допущением о том, что любое положение во вселенной эквивалентно любому другому
Форма | Кривизна | Протяжённость |
---|---|---|
Сфера | Положительная | Конечная |
Поверхность стола | Нулевая («плоская») | Бесконечная |
Экран компьютерной игры | Нулевая («плоская») | Конечная |
Ломтик чипсов «Принглс» | Отрицательная | Бесконечная |
Наша Вселенная
Расширение пространства, обнаруженное математическим путём Леметром и Фридманом, применимо к любой вселенной, имеющей одну из вышеперечисленных форм. В случае положительной кривизны можно воспользоваться двумерной аналогией и представить себе, как растягивается поверхность воздушного шарика по мере того, как его надувают воздухом. Для нулевой кривизны подходит образ плоского резинового коврика, который равномерно тянут во всех направлениях. В случае отрицательной кривизны вообразите растягиваемую резиновую чипсину. Если галактики представить себе как равномерно разбросанные блёстки на любой из этих поверхностей, расширение пространства приведёт к тому, что отдельные блёстки-галактики будут отодвигаться друг от друга — в точности как в той картине разбегания галактик, которую наблюдал Хаббл в 1929 году.
Это убедительная космологическая заготовка, но для её полного завершения и определения надо выяснить, какая из описанных форм соответствует нашей Вселенной. Мы можем определить форму знакомых нам объектов — бублика, бейсбольного мяча, куска льда, — взяв их в руки и повертев так и сяк. Проблема в том, что сделать то же самое со вселенной мы не в состоянии, поэтому определять её форму мы вынуждены косвенными методами. Уравнения общей теории относительности подсказывают нам математическую стратегию. Они говорят, что кривизна пространства сводится к единственной наблюдаемой величине — к пространственной плотности материи (более точно — материи и энергии). Если материи много, тяготение заставляет пространство сворачиваться на себя, порождая сферическую форму. Если материи мало, пространство чувствует себя свободно и разворачивается подобно ломтику чипсов «Принглс». А если пространство содержит некое точно определённое количество материи, то его кривизна равна нулю. [4]
Уравнения общей теории относительности также приводят к точному численному критерию, разделяющему данные три возможности. Математические выкладки показывают, что «определённое количество материи» — так называемая критическая плотность, составляет на сегодняшний день примерно 2 × 10−29 грамма на кубический сантиметр, что соответствует примерно шести атомам водорода в одном кубическом метре, или, в более привычных образах, — одной дождевой капле в объёме, равном объёму земного шара. [5] Если оглядеться вокруг, легко может показаться, что плотность вещества во вселенной превышает критическую, но такой вывод будет поспешным. При вычислении критической плотности исходят из того, что вещество равномерно распределено в пространстве. Поэтому надо представить, что атомы, из которых состоят Земля, Луна, Солнце и всё остальное, равномерно распределены по космосу. Тогда весь вопрос сводится к тому, будет ли каждый кубический метр весить больше или меньше шести атомов водорода.
В силу важности космологических следствий, связанных со средней плотностью материи во вселенной, астрономы в течение десятилетий пытались измерить её величину. Метод измерений, которым они пользовались, идейно прост. С помощью мощных телескопов астрономы тщательно обследовали большие области пространства и суммировали массы всех видимых звёзд, а также массу остального материала, наличие которого они могли предполагать, изучая движение звёзд и галактик. До недавнего времени все проведённые наблюдения указывали на то, что величина средней плотности не очень велика, примерно 27 процентов от критической плотности, что соответствует двум атомам водорода на кубический метр. В свою очередь, это означало бы, что вселенная имеет отрицательную кривизну.
Однако позже, в конце 90-х годов прошлого столетия, произошло нечто экстраординарное. На основе некоторых великолепных наблюдений, которые будут рассмотрены в главе 6, и их анализа астрономы осознали, что из подсчёта постоянно упускался некоторый существенный вклад: диффузная энергия, которая, по-видимому, равномерным образом распределена во всём пространстве. Эти данные потрясли всех. Энергия, наполняющая пространство? Звучит как космологическая постоянная, которую, как мы видели, восемьдесят лет назад ввёл Эйнштейн, и от которой, как хорошо известно, он позже сам отказался. Возродили ли современные наблюдения космологическую постоянную?
До сих пор у нас нет полной уверенности на этот счёт. Даже сейчас, спустя десятилетие после первоначальных наблюдений, астрономам всё ещё предстоит выяснить, является ли такая однородная энергия неизменной, или её величина в заданной области пространства изменяется со временем. Космологическая постоянная, как следует из самого её названия (и как следует из математической сути, так как это единственное фиксированное число в гравитационной налоговой декларации), должна быть неизменной. Для описания общего случая, если энергия может изменяться, а также чтобы подчеркнуть факт отсутствия у данной энергии излучения (это объясняет, почему её не могли обнаружить так долго), астрономы ввели новый термин: тёмная энергия. При этом прилагательное «тёмный» не менее хорошо характеризует и наше текущее понимание. Никто не в силах объяснить происхождение тёмной энергии, её фундаментальный состав или свойства — эти вопросы активно исследуются в настоящее время, и мы вернёмся к ним в последующих главах.