Наука и удивительное (Как человек понимает природу) - Вайскопф Виктор. Страница 11

В первую очередь здесь следует отметить существование двух родов электричества. Предмет может быть заряжен электричеством как одного, так и другого рода. Они называются положительным и отрицательным электричеством, но в этих названиях не отражено качественное различие между ними. Положительное электричество ничем не «лучше» отрицательного. Ученые, которые дали им эти названия, с тем же успехом могли назвать положительное электричество отрицательным и наоборот. Заряженные объекты воздействуют друг на друга. Если они заряжены разноименным электричеством, то они притягиваются, если одноименным — отталкиваются.

Электрические заряды противоположного знака могут взаимно уничтожаться. Положительно заряженное тело можно сделать электрически нейтральным, если сообщить ему равное количество отрицательного электричества. Следовательно, если какое-либо тело не заряжено, то оно может либо совсем не нести электрического заряда, либо нести равные количества положительного и отрицательного заряда. Одно из великих открытий физики заключалось в обнаружении того, что незаряженное вещество действительно состоит из положительных и отрицательных электрических зарядов.

Электрические заряды могут двигаться в веществе. Движение заряда особенно легко совершается в металлах. Металлическая проволока, соединяя два противоположно заряженных тела, немедленно разряжает их, так как противоположные заряды притягиваются. Отрицательное электричество в одном теле переходит к положительному в другом, и наоборот. Движения заряда в металлической проволоке мы называем электрическим током. В настоящее время мы имеем готовые «заряженные объекты» у себя дома. Два гнезда штепсельной розетки постоянно поддерживаются заряженными электричеством противоположного знака, так что в любой соединяющей их проволоке возникает ток, поддерживаемый электрической силой, действующей между гнездами.

Тщательное исследование того, что же именно движется в проволоке, показало, что движется отрицательное электричество; положительное остается в самом теле. Отрицательное электричество состоит из маленьких «атомов» электричества, электронов — частиц, с которыми мы часто будем иметь дело в этой книге. Все вещества как бы заполнены электронами.

Отрицательный заряд электронов в веществе обычно уравновешен равным количеством положительного. Положительный же заряд представляется связанным с веществом и, следовательно, неподвижным. Позже мы увидим, что положительный заряд находится в центре атомов и поэтому должен оставаться с ними. Электроны легко удалить из любого вещества или прибавить к нему. Если добавить к веществу некоторое количество электронов, то оно приобретает отрицательный заряд; если удалить часть электронов, то возникает избыток положительного электричества и вещество заряжается положительно.

Мы здесь впервые заглянули в электрическую природу материи. Поверхностному взгляду она не показывает своего электричества; оно маскируется тем, что отрицательные и положительные заряды в веществе обычно точно уравновешивают друг друга, и мы не можем обнаружить никакого избыточного заряда. Тем не менее результаты более глубоких исследований показывают, что вещество состоит из электрически заряженных частиц — подвижных отрицательных электронов и центров атомов, несущих положительные заряды.

Вернемся теперь к силе взаимодействия заряженных объектов. Она зависит от расстояния между зарядами. Например, взаимодействие противоположных зарядов в штепсельных гнездах обычной проводки слишком слабо, чтобы гнать электроны от одного гнезда к другому. Но если достаточно сблизить гнезда (примерно на 0,025 см), то это взаимодействие станет достаточно сильным, чтобы заставить электроны пройти зазор, и мы увидим искру.

Силу взаимодействия двух заряженных объектов легко измерить. Сила притяжения, действующая между частицами с положительным и отрицательным зарядами, убывает обратно пропорционально квадрату расстояния, т. е. по тому же закону, по которому убывает с расстоянием сила тяготения. Конечно, сила тяготения действует между любыми двумя массами, тогда как электрическое притяжение действует только между объектами, несущими противоположные заряды. Если оно действует между очень маленькими заряженными телами, то сила электрического притяжения обычно гораздо больше гравитационной силы (т. е. силы тяготения). Эта аналогия между силами приводит нас к чрезвычайно существенному выводу: отрицательные электроны в веществе притягиваются положительными центрами атомов примерно таким же образом, как и планеты притягиваются Солнцем. Поэтому мы полагаем, что электроны вращаются вокруг атомных центров так же, как планеты вокруг Солнца. Это заключение имеет очень большое значение в теории атома, что мы и увидим в следующей главе.

Магнетизм

Мы реже замечаем магнитные явления в природе, чем электрические. Конечно, компасом пользуются везде и всегда, но это кажется чем-то столь естественным, что никто уже не задумывается над физической стороной дела. Магнитными свойствами обладает лишь небольшое число металлов, хотя некоторые из них распространены весьма широко, например железо. Тем не менее магнетизм — явление поразительное; когда мы держим в руке магнит и кусок железа, то замечаем силу особого рода — некую «силу природы», подобную силе тяжести (рис. 16).

Наука и удивительное<br />(Как человек понимает природу) - i_022.jpg

Рис. 16. Магнитное поле, показанное железными опилками.

Весьма важным оказалось обнаружение тесной связи магнетизма с электричеством. На такую связь между ними впервые указал датчанин Ганс Христиан Эрстед в начале XIX века. Он установил, что электрический ток, текущий по круговой или спиральной проволоке, действует точно так же, как магнит, и создает магнитную силу. Это открытие привело француза Андре Ампера к предположению, что обычный стальной магнит должен действовать по тому же принципу, и он заключил, что в каждом атоме имеется слабый круговой ток; если большинство этих атомных токов ориентировано в одном направлении, то возникает магнитная сила. Гипотеза Ампера оказалась совершенно правильной.

Связь между электричеством и магнетизмом взаимна. Не только электричество создает магнетизм, нс и магнетизм создает электричество. Если какой-либо магнит движется вблизи электрической проволоки или проволока движется вблизи магнита, в ней возникает ток. Переменная магнитная сила индуцирует ток и, следовательно, действует точно так же, как и электрическая сила. На этом принципе основаны наши генераторы — устройства, производящие ток, применяемый в технике. В генераторах при вращении якоря намотанные на него витки проволоки движутся в магнитном поле, и в проволоке возникает электрический ток. В каких бы условиях ни изменялось магнитное поле, оно всегда создает электрическую силу, приводящую в движение электрические заряды.

Электрические и магнитные поля

Изучение связи между электрическими и магнитными явлениями привело к открытию нового явления природы — совокупного электрического и магнитного поля. Оно было сделано примерно в середине XIX века. Мы обязаны этим открытием главным образом Фарадею, Максвеллу и Герцу. Возникшие отсюда новые представления не только глубоко повлияли на наше понимание природы, но и изменили наш образ жизни, так как они стимулировали развитие энергетики и радиотехники. Понятие электромагнитного поля связано с тем удивительным обстоятельством, что электрические заряды или магниты оказывают действие на другие объекты (заряды или магниты), не находящиеся в непосредственной близости от них. Электрические и магнитные силы действуют в пространстве на расстоянии. Как это может быть? Что передает это действие от одного тела к другому?

Чтобы понять это действие на расстоянии, воспользуемся представлением о поле. Каждый электрический заряд служит центром, или источником, электрического поля. Это поле есть свойство самого пустого пространства. Пространство в окрестности заряда находится в состоянии натяжения. Последнее можно измерить, воспользовавшись пробным зарядом, на который при его помещении в поле будет действовать некая сила. Притяжение положительного заряда А и отрицательного В можно описать следующим образом (рис. 17).