Структура реальности - Дойч Дэвид. Страница 11
Рис. 2.5. Картина света и тени, образованная белым светом после прохождения через маленькое круглое отверстие
Как бы ни озадачивало то, что лучи света искривляются, проходя через маленькие отверстия, я не считаю, что это нарушает сами основы. В любом случае, для наших настоящих целей важно, что свет действительно искривляется. Это означает, что тени вообще не должны выглядеть как силуэты предметов, которые их отбрасывают. Более того, дело даже не в размывании изображения, вызванном полутенью. Оказывается, что перегородка с отверстиями сложной формы может отбрасывать тень совершенно другой формы.
Рисунок 2.6 показывает приблизительно в натуральную величину часть картины тени, отбрасываемой светонепроницаемой перегородкой с двумя прямыми параллельными щелями, находящейся на расстоянии трех метров от экрана. Щели находятся на расстоянии одной пятой миллиметра друг от друга и освещаются прямым красным лучом лазера расположенного по другую сторону перегородки. Почему используется свет лазера, а не электрического фонарика? Только потому, что точная форма тени также зависит и от цвета света, который ее производит, белый свет фонарика содержит весь спектр видимых цветов, поэтому он может отбрасывать тени с интерференционными полосами различного цвета. Значит, для получения точной формы тени во время эксперимента лучше использовать свет одного цвета. Можно было бы поместить цветной фильтр (например, цветное оконное стекло) перед фонариком так, чтобы проходил свет только одного цвета. Это могло бы помочь, но фильтры не стопроцентно селективны. Лучше воспользоваться светом лазера, поскольку лазер можно очень точно настроить на испускание монохроматического света.
Рис. 2.6. Тень, отбрасываемая перегородкой с двумя прямыми параллельными щелями
Если бы свет распространялся прямолинейно, картина, изображенная на рисунке 2.6, представляла бы две ярких полосы с резкими границами, расположенные на расстоянии одной пятой миллиметра друг от друга (что было бы невозможно увидеть при таком масштабе), а остальная часть экрана осталась бы в тени. Но в действительности свет искривляется так, что образует много ярких и темных полос без резких границ. Если увеличить расстояние между щелями так, чтобы они оставались в пределах лазерного луча, расстояние между полосами на экране увеличится на столько же. В этом отношении тень ведет себя как обычная тень, отбрасываемая крупным предметом. А какую тень мы получим, если прорежем в перегородке между двумя существующими щелями еще две идентичные щели, так, что у нас будет четыре щели, расположенные на расстоянии одной десятой миллиметра друг от друга? Можно ожидать, что картина, изображенная на рисунке 2.6, останется практически неизменной. Как-никак первая пара щелей отбрасывает тени, показанные на рисунке 2.6, и, как я уже сказал, вторая пара щелей должна произвести подобную картину тени, сдвинутую в сторону на одну десятую миллиметра — почти на том же самом месте. Кроме того, мы знаем, что лучи света пересекаются, не оказывая никакого воздействия друг на друга. Так что две пары щелей должны дать ту же самую картину тени, но в два раза ярче и чуть более размытую.
В действительности происходит нечто отличное. Действительная тень, отбрасываемая перегородкой с четырьмя прямыми параллельными щелями, показана на рисунке 2.7 (а). Для сравнения ниже я снова привожу рисунок тени от перегородки с двумя щелями (рисунок 2.7(b)). Ясно, что тень от четырех щелей представляет собой отнюдь не комбинацию двух слегка отдаленных друг от друга теней от двух щелей, а имеет новую и более сложную картину. В этой картине есть такие участки, как точка X. которая не освещена на картине тени от четырех щелей и освещена на картине тени от двух щелей. Эти участки освещались при наличии в перегородке двух щелей, но перестали освещаться, когда в перегородке прорезали еще две щели, пропускающие свет. Появление этих щелей воспрепятствовало попаданию света в точку X.
Рис. 2.7. Тени отбрасываемые перегородкой с (а) четырьмя и (b) двумя параллельными щелями
Таким образом, появление еще двух источников света затемняет точку X. а их удаление снова освещает ее. Каким образом? Можно представить два фотона, направляющиеся к точке Х и отскакивающие друг от друга как бильярдные шары. Только один из фотонов мог бы попасть в точку X, но они мешали друг другу, и потому ни один из них туда не попал. Скоро я покажу, что это объяснение не может быть истинным. Тем не менее, основной идеи избежать невозможно: через вторую пару щелей должно проходить что-то, препятствующее попаданию света из первой пары щелей в точку X. Но что? Это мы можем выяснить с помощью дальнейших экспериментов.
Во-первых, картина тени от перегородки с четырьмя щелями, изображенная на рисунке 2.7 (а), появляется только в том случае, если все четыре щели освещены лазерным лучом. Если освещены только две щели, появляется картина, соответствующая тени от двух щелей Еcли освещены три щели, появится картина тени от трех щелей которая в свою очередь будет отличаться от двух предыдущих. Таким образом, в луче света находится нечто, вызывающее интерференцию Картина тени от двух щелей также появляется, если две щели заполнить светонепроницаемым материалом, но она изменяется при заполнении этих щелей прозрачным материалом. Другими словами, интерференции препятствует нечто, препятствующее свету, это может быть даже что-то столь же несущественное, как туман. Но оно может пройти через все, что пропускает свет, даже через непроницаемый (для материи) алмаз. Если в аппарате расположить сложную систему зеркал и линз так, чтобы свет мог распространяться от каждой щели до конкретной точки на экране, то в этой точке наблюдалась бы часть картины тени от четырех щелей. Если конкретной точки достигает свет только от двух щелей, на экране мы увидим часть картины тени от двух щелей и т.д.
Таким образом, что бы ни вызывало интерференцию, оно ведет себя как свет. Оно присутствует в луче света, но отсутствует вне него. Оно отражается, передается или блокируется тем, что отражает, передает или блокирует свет. Возможно, вы удивитесь, почему я столь досконально разбираю этот вопрос. Абсолютно очевидно, что это свет то есть фотонам из одной щели мешают фотоны из других. Но, возможно вы поставите под сомнение очевидное после следующего эксперимента, расшифровки спектров.
Что нам ожидать при проведении этих экспериментов только с одним фотоном? Например, предположим, что наш фонарик расположен так далеко от экрана, что за целый день на экран попадает только один фотон. Что увидит наша лягушка, наблюдающая за экраном? Если то, что каждому фотону мешают другие фотоны, — правда, то не уменьшится ли интерференция, когда фотоны будут появляться реже? Не прекратится ли она вовсе, если через аппарат за раз будет проходить только один фотон? Мы по-прежнему можем ожидать появления полутеней, т. к. фотон при прохождении через щель может отклониться от своего курса (например, ударившись о край щели). Но на экране мы точно не должны увидеть участок, подобный точке X, который получает фотоны, когда открыты две щели, и становится темным когда открывают две другие.
Однако именно это мы и наблюдаем. Независимо от того, насколько редко появляются фотоны, картина тени остается неизменной. Даже при проведении эксперимента с появлением одного фотона за раз этот фотон не попадает в точку X. когда открыты все четыре щели. Но стоит только закрыть две щели, и вспышки в точке Х возобновляются.