Вечность. В поисках окончательной теории времени - Кэрролл Шон. Страница 127

Что касается показательных функций, есть две важные вещи, о которых необходимо помнить. Любое основание, возведенное в степень 0, равно 1, а любое основание, возведенное в степень 1, равно самому себе. Для основания 10 это выглядит так:

100 = 1, 101 = 10

Если степень — это отрицательное число, то результатом операции является число, обратное результату возведения в соответствующую положительную степень:

10–1 = 1/101 = 0,1, 10–3 = 1/103 = 0,001

То, что вы видите выше, — это всего лишь конкретные примеры из более общих свойств, которым подчиняется показательная функция. Одно из этих свойств является невероятно важным: если умножить два числа, представляющих собой одно и то же основание, возведенное в разные степени, то при перемножении степени складываются, а основание остается тем же самым:

10x ∙ 10y = 10(x+y)

То же верно и в обратную сторону: показательная функция от суммы степеней равна произведению двух чисел, равных основанию, возведенному в эти степени. [312]

Большие числа

Нетрудно понять, почему показательная функция так полезна: числа, с которыми нам приходится иметь дело, иногда бывают чрезвычайно большими, а с помощью возведения в степень вы можете превратить число средней величины в просто огромное. Как мы обсуждали в главе 13, количество различных состояний, необходимых для описания возможных конфигураций нашего сопутствующего объема Вселенной, равно примерно

1010^120

Это число настолько неимоверно, невообразимо огромное, что было бы совершенно непонятно, с какой стороны вообще подступиться к его описанию, если бы на помощь не пришло возведение в степень.

Давайте рассмотрим несколько других больших чисел, для того чтобы оценить, насколько огромно это. Один миллиард равен 109, тогда как один триллион — это 1012; с этими значениями мы хорошо знакомы благодаря обсуждениям экономики и правительственных трат. Количество частиц в нашей наблюдаемой Вселенной составляет около 1088; настолько же велика была энтропия в ранние времена. Теперь, когда у нас есть черные дыры, энтропия наблюдаемой Вселенной равна приблизительно 10101, хотя вполне могла бы дорасти до 10120. (Это число, 10120, также представляет собой отношение предсказываемого значения плотности энергии вакуума к наблюдаемой плотности.)

Для сравнения, энтропия макроскопического объекта, такого как чашка кофе, — где-то 1025. Это значение сравнимо с числом Авогадро, которое равно 6,02 ∙ 1023 — примерно столько атомов составляют один грамм водорода. Число песчинок на всех пляжах Земли — приблизительно 1020. Число звезд в типичной галактике — около 1011, а число галактик в наблюдаемой Вселенной — около 1011, то есть в наблюдаемой Вселенной существует примерно 1022 звезд — немного больше, чем песчинок на Земле.

Базовые единицы измерения, используемые физиками, — это единицы времени, длины и массы; используются также их комбинации. Самый короткий интервал времени, представляющий интерес, — это планковское время, примерно 10–43 секунд. Предположительно инфляция продолжалась около10–30 секунд или меньше, хотя это значение чрезвычайно неточно. Вселенная создала гелий из протонов и нейтронов где-то через 100 секунд после Большого взрыва, а прозрачной стала в момент рекомбинации, 380 000 лет (1013 секунд) спустя. (В одном году около 3 ∙ 107 секунды.) Сейчас наблюдаемой Вселенной 14 миллиардов лет (примерно 4 ∙ 1017 секунды.) Еще через 10100 лет или около того все черные дыры практически полностью испарятся, оставив после себя холодную и пустую Вселенную.

Самая маленькая длина — это планковская длина, около 10–33 сантиметров. Размер протона — примерно 10–13 сантиметров, а размер человеческого существа — примерно 102 сантиметров (это очень низкое человеческое существо, но мы сейчас оперируем приблизительными значениями). Расстояние от Земли до Солнца — около 1013 сантиметров; расстояние до ближайшей звезды — около 1018 сантиметров, а размер наблюдаемой Вселенной — около 1028 сантиметров.

Планковская масса — это примерно 10–5 граммов; для отдельной частицы это было бы невероятно много, но по макроскопическим стандартам — совсем нет. Самые легкие частицы с ненулевой массой — нейтрино; мы даже пока не знаем точно, какова их масса, но минимальная вроде бы составляет около 10–36 граммов. Масса протона — приблизительно 10–24 граммов, а человеческого существа — примерно 105 граммов. Солнце весит около 1033 граммов, галактика — около 1045 граммов, а масса, содержащаяся в пределах наблюдаемой Вселенной, составляет около 1056 граммов.

Логарифмы

Логарифмическая функция — самая простая вещь на свете: она всего лишь отменяет показательную функцию. Если у нас есть какое-то число, которое может быть выражено в форме 10x, а это возможно для любого положительного числа, то логарифм этого числа равен просто. [313]

lg(10x) = x

Что может быть проще? Точно так же возведение в степень отменяет логарифм:

10lgx = x

Можно также думать об этом так: если число представляет собой целую степень десяти (например, 10, 100, 1 000 и т. п.), то логарифм — это просто-напросто число нулей справа от единицы:

lg(10) = 1,

lg(100) = 2,

lg(1000) = 3

Вечность. В поисках окончательной теории времени - img_93.png

Рис. П2. Логарифмическая функция lg(x). Она не определена для отрицательных значений x, и по мере приближения x к нулю справа значение логарифма стремится к минус бесконечности.

Однако так же как и показательная функция, логарифм — это гладкая функция, как показано на рис. П2. Логарифм числа 2,5 равен 0,3979, логарифм 25 равен примерно 1,3979, логарифм 250 — примерно 2,3979 и т. д. Единственное ограничение заключается в том, что невозможно взять логарифм от отрицательного числа, и это разумно, так как логарифм отменяет показательную функцию, а получить отрицательное число в результате операции возведения в степень невозможно. Грубо говоря, для больших чисел логарифм — это просто «количество цифр в числе».

Логарифм демонстрирует свойство, аналогичное тому, с которым мы уже познакомились выше для возведения в степень (результат возведения в степень, равную сумме чисел, равен произведению соответствующих степеней): логарифм произведения равен сумме логарифмов, то есть

log(x ∙ y) = log(x) + log(y)

Это чудесное свойство делает логарифмы невероятно полезными для изучения энтропии. Как мы обсуждали в главе 8, физическое свойство энтропии заключается в том, что энтропия двух систем после объединения равна сумме энтропий этих систем по отдельности. Но число возможных состояний объединенной системы равно произведению количеств возможных состояний двух систем. Поэтому Больцман сделал вывод о том, что энтропия должна быть равна логарифму числа состояний, а не самому числу состояний. В главе 9 мы рассказали схожую историю, но уже для информации: Шэннон хотел найти меру информации, для которой общая информация, переданная в двух независимых сообщениях, была бы равна сумме количеств информации в каждом из сообщений, и он также прибегнул к помощи логарифма.