Вечность. В поисках окончательной теории времени - Кэрролл Шон. Страница 33

Пространство—время с вратами во вчера совершенно определенно содержит замкнутые времениподобные кривые. Все, что вам нужно сделать, — это пройти через ворота спереди, для того чтобы вернуться на один день назад, затем обойти ворота, снова оказавшись перед ними, и терпеливо подождать. Ровно через день вы обнаружите себя в том же месте и моменте пространства— времени, в котором вы находились сутки назад (по вашим персональным часам), и, разумеется, вы встретитесь там с копией себя образца прошлых суток. При желании вы сможете обменяться любезностями с собой из прошлого и обсудить подробности прошедшего дня. В этом и заключается суть замкнутой времениподобной кривой.

И здесь в игру вступают парадоксы. По какой-то причине физикам нравится делать свои мысленные эксперименты как можно более жестокими и беспощадными; вспомните, к примеру, Шрёдингера и его несчастного кота. [84] Когда дело доходит до путешествий во времени, стандартный сценарий включает перемещение в прошлое и убийство своего дедушки до того, как тот успеет встретиться с бабушкой, чтобы, таким образом, предотвратить собственное рождение. Парадокс, порождаемый этим деянием, очевиден: если ваши дедушка с бабушкой так и не встретились, то как вы могли появиться на свет, а потом отправиться в прошлое и убить одного из своих предков? [85]

Однако не обязательно воображаемые события должны быть настолько драматичными. Вот более простой и мирный пример парадокса. Вы подходите к вратам во вчера и замечаете, что вас там ждет ваша копия, выглядящая примерно на день старше, чем вы сейчас. Поскольку вам известно о существовании замкнутых времениподобных кривых, вы не слишком удивляетесь такому повороту событий: очевидно, что ваша копия просто бродила вокруг ворот в ожидании встречи с вами, для того чтобы пожать руку своей версии из прошлого. Итак, вы двое мило беседуете некоторое время, а затем вы покидаете компанию своей копии и проходите через ворота спереди, попадая в результате во вчерашний день. Но после этого — исключительно из упрямства — вы решаете, что более не желаете придерживаться традиции. Вместо того чтобы болтаться на этом поле, готовясь к встрече со своей более молодой копией, вы уходите оттуда, ловите такси в аэропорт и садитесь на рейс до Багамских островов. Вы даже не встречаетесь с той копией себя, которая первой прошла через ворота. Однако та копия встречалась со своей копией из будущего — ведь вы храните воспоминания об этой встрече. Что же происходит?

Одно простое правило

Существует простое правило, разрешающее все возможные парадоксы путешествий во времени. [86] Оно гласит: парадоксов не бывает.

Вот так. Проще простого.

Пока что ученые не обладают достаточными знаниями для того, чтобы говорить, допускают ли физические законы существование макроскопических замкнутых времениподобных кривых. Если нет, то и необходимости беспокоиться о парадоксах тоже нет. Но гораздо интереснее такой вопрос: всегда ли замкнутые времениподобные кривые приводят к возникновению парадоксов? Если это так, то их существование невозможно и вопрос закрыт.

Однако вполне возможно, что парадоксы не являются непременными спутниками замкнутых времениподобных кривых. Мы все согласны, что события, противоречащие логике, происходить не могут. В частности, в классической физике, с которой мы работаем в данный момент (в противоположность квантовой механике [87]), существует один-единственный верный ответ на вопрос «Что произошло в окрестности данного события в пространстве—времени?». В каждой области пространства—времени что-то происходит: вы проходите сквозь ворота, вы находитесь в одиночестве, вы встречаете кого-то еще, вы почему-то не приходите на встречу, — что угодно. И это что-то является именно тем, чем является, и было именно тем, чем было, и будет именно тем, чем будет, сейчас и всегда. Если в каком-то событии пространства—времени ваш дедушка заигрывал с вашей бабушкой, то именно это и происходило в том событии. Вы никак не сможете это изменить, потому что это уже случилось. Одинаково невозможно повлиять на события в прошлом как пространства— времени, содержащего замкнутые времениподобные кривые, так и пространства—времени, где таких кривых нет. [88]

Очевидно, что непротиворечивые истории возможны, причем даже в пространствах—временах с замкнутыми времениподобными кривыми. На рис. 6.4 изображена мировая линия одного бесстрашного путешественника, который дважды перепрыгивает назад во времени, а затем ему становится скучно, и он делает один прыжок в будущее, прежде чем уйти от волшебных ворот. Его перемещения не таят никаких парадоксов. Точно так же мы могли бы взять сценарий из предыдущего раздела и немного переделать его, чтобы исключить парадоксы. Вы подходите к воротам, видите свою копию, которая старше вас на один день; вы обмениваетесь любезностями, а затем проходите через ворота спереди и оказываетесь во вчерашнем дне. Однако вместо того чтобы демонстрировать упрямство и уходить прочь, вы выжидаете один день и встречаетесь со своей более молодой копией, с которой обмениваетесь любезностями, прежде чем пойти по своим делам. Какой бы участник событий ни описал происходящее, его версия будет превосходно согласована.

Мы могли бы придумать массу куда более драматичных историй, которые тем не менее будут безупречно согласованы. Вообразите, что нас назначили Стражами Врат, и наша работа — неусыпно наблюдать за проходящими сквозь ворота. Однажды, стоя по сторонам от ворот, мы замечаем незнакомца, вышедшего из ворот с тыльной стороны. Ничего странного; это всего лишь означает, что незнакомец завтра войдет (или уже вошел? — в нашем языке нет подходящих конструкций для описания путешествий во времени) в ворота спереди. Продолжая бдительно охранять ворота, мы видим, что этот незнакомец бродит по округе в течение дня, а затем, спустя ровно двадцать четыре часа, спокойно проходит через ворота спереди. Никто больше ниоткуда не появлялся, а незнакомцы, один из которых вошел в ворота, а другой вышел из них, формируют замкнутый цикл — эти двадцать четыре часа и есть полное время жизни незнакомца. История может показаться жутковатой и невероятной, однако в ней отсутствуют парадоксы и нет никаких логических противоречий. [89]

Вопрос же, который интересует нас больше всего, — что произойдет, если мы попытаемся мутить воду? Если решим, что не хотим следовать предписанному плану? В истории, где вы встречаетесь со своей копией старше вас на один день, а затем пересекаете порог врат и оказываетесь в прошлом, есть потенциальная развилка. Кажется, что после того, как вы прошли сквозь врата, у вас есть выбор: вы можете послушно выполнить свое предназначение или же взбунтоваться и уйти прочь. Итак, если вы все же решите пойти наперекор, что вас остановит? Вот здесь вся эта история с парадоксами и становится по-настоящему серьезной.

Мы знаем ответ: парадоксы невозможны. Если вы встретились со своей старшей копией, то мы можем утверждать с абсолютной метафизической уверенностью, что как только вы достигнете этого возраста, вы обязаны будете встретиться со своим более молодым дублем. Представьте себе, что мы убрали из условий задачи непослушные человеческие создания и рассматриваем простые неодушевленные объекты, например последовательность биллиардных шаров, прокатывающихся сквозь ворота. Существует масса наборов согласованных явлений, которые могли бы происходить в различных событиях пространства—времени, но только один из наборов произойдет в действительности. [90] Согласованные истории случаются, несогласованные — нет.