Вечность. В поисках окончательной теории времени - Кэрролл Шон. Страница 94
Благодаря открытию Малдасены Стивен Хокинг согласился признать свое поражение в споре с Прескиллом и Торном (хотя до этого, по обыкновению, провел все вычисления своим способом, для того чтобы окончательно во всем удостовериться). Вспомните, что главный вопрос заключался в том, уничтожает ли информацию процесс испарения черной дыры (в отличие от эволюции в соответствии с обычными правилами квантовой механики) или же информация, попадающая в черную дыру, каким-то образом уносится хокинговским излучением.
Если Малдасена прав, то мы можем рассмотреть этот вопрос в контексте пятимерного пространства анти-де Ситтера. Это не реальный мир, но детали, отличающие его от реального мира, не связаны с загадкой потери информации; в частности, можно вообразить, что отрицательная космологическая постоянная очень мала и, по сути, не играет никакой роли. Итак, мы создаем черную дыру в пространстве анти-де Ситтера и позволяем ей испаряться. Теряется ли при этом информация? Давайте переведем этот вопрос на язык аналогичной ситуации в четырехмерной теории. В этой теории гравитация отсутствует, и, следовательно, все подчиняется правилам обычной квантовой механики. Однако в четырехмерной негравитационной теории информация попросту не может теряться, а раз теории эквивалентны, то и в пятимерной теории с гравитацией дела с информацией должны обстоять точно так же. Итак, если мы не упустили какую-то критическую мелочь, информация должна каким-то образом сохраняться в процессе испарения черной дыры.
Это основная причина, почему Хокинг признал поражение в споре и теперь согласен с тем, что черные дыры не разрушают информацию. Но вы видите, что это доказательство, хотя и кажется довольно основательным, все же является косвенным. В частности, оно не предоставляет никакого конкретного физического понимания того, каким образом информация попадает в хокинговское излучение. Очевидно, что это как-то происходит, но каков конкретный механизм — пока неясно. Вот почему Торн со своим проигрышем в споре не согласился, а Прескилл неохотно принял причитающуюся ему энциклопедию. Независимо от того, соглашаемся мы с утверждением о сохранении информации или нет, ясно одно: ученым еще предстоит серьезно поработать, чтобы выяснить, что же именно происходит при испарении черной дыры.
Сюрприз из теории струн
В истории с энтропией черной дыры есть одна глава, напрямую не связанная со стрелой времени, но настолько занимательная, что я просто не могу обойти ее стороной. Мы очень кратко познакомимся с ней — она посвящена природе микросостояний черной дыры в теории струн.
Величайшим триумфом больцмановской теории энтропии было то, что она оказалась в состоянии объяснить измеримую макроскопическую величину — энтропию — в терминах микроскопических составляющих. Больше всего Больцман интересовался примерами, составными элементами в которых были атомы газа в контейнере или молекулы двух жидкостей, которые мы смешиваем. Но нам хотелось бы думать, что его догадки носят гораздо более общий характер; формула S=k·lgW, в соответствии с которой энтропия S пропорциональна логарифму числа перетасовок микросостояний W, должна быть истинна для любых систем. Вопрос только в том, чтобы понять, о каких микросостояниях идет речь и сколько всего существует способов их перетасовать. Другими словами, что есть «атомы» заданной системы?
Судя по всему, из формулы энтропии черной дыры, предложенной Хокингом, следует, что каждой конкретной макроскопической черной дыре соответствует очень большое количество микросостояний. Каковы эти микросостояния? В классической общей теории относительности их природа не очевидна. В конечном итоге это должны быть состояния квантовой гравитации. Однако здесь нас поджидают как хорошие новости, так и плохие. Плохие новости: мы не настолько хорошо понимаем квантовую гравитацию в реальном мире, поэтому попросту не можем перечислить все возможные микросостояния, соответствующие макроскопической черной дыре. Хорошие же новости заключаются в том, что мы можем использовать формулу Хокинга в качестве подсказки для проверки наших идей о том, как квантовая гравитация могла бы работать. Несмотря на убеждение физиков, что однажды найдется способ примирить гравитацию с квантовой механикой, очень трудно получить непосредственные экспериментальные данные для подобных задач — просто потому, что гравитация представляет собой чрезвычайно слабое взаимодействие. Поэтому любая подсказка, попадающаяся нам на пути, невероятно значима.
Главный кандидат на роль непротиворечивой теории гравитации — это теория струн. Идея, лежащая в ее основе, очень проста: согласно данной теории, элементарные составляющие материи — это не точечные частицы. Вместо них следует представлять себе одномерные кусочки «струны» (вы не должны спрашивать, из чего сделаны эти струны; ничего более фундаментального в их составе нет). Возможно, вам эта идея совершенно не кажется перспективной — ну хорошо, у нас струны вместо частиц, и что?
В теории струн весьма интересно то, что она накладывает массу ограничений. На основе идеи об элементарных частицах можно выстроить множество самых разных теорий, но выясняется, что непротиворечивых квантово-механических теорий струн очень мало; на самом деле пока мы полагаем, что она существует всего одна. И эта единственная теория неизбежно привносит определенные ингредиенты: дополнительные измерения пространства, и суперсимметрию, и многомерные браны (объекты, похожие на струны, но обладающие двумя или большим числом измерений). А самое важное то, что эта теория подразумевает существование гравитации. Теория струн первоначально предлагалась как теория ядерных сил, но это не принесло особых результатов, причем по довольно необычной причине — данная теория постоянно предсказывала существование силы, подобной гравитации! Так что ученые-теоретики решили взять этот лимон и приготовить лимонад, начав рассматривать теорию струн как теорию квантовой гравитации. [235]
Если теория струн — это верная теория квантовой гравитации (мы пока что не можем говорить с уверенностью, но определенные многообещающие признаки уже имеются), то она должна обеспечивать на микроскопическом уровне понимание того, откуда берется энтропия Бекенштейна—Хокинга. Что примечательно, она это делает, по крайней мере для определенных очень специальных типов черных дыр.
Прорыв был совершен в 1996 году Эндрю Строминджером и Камраном Вафа, исследования которых были основаны на более ранних работах Леонарда Сасскинда и Ашока Сена. [236] Как и Малдасена, они рассматривали пятимерное пространство—время, но у них не было отрицательной энергии вакуума, и они не фокусировались исключительно на голографии. Вместо этого они решили воспользоваться интересным свойством теории струн — возможностью «подстраивать» силу гравитации. В нашем мире гравитационные силы определяются гравитационной постоянной Ньютона, которая обозначается G. Но в теории струн сила гравитации превращается в переменную — она может меняться от места к месту и от момента к моменту. В гибком и экономически эффективном мире мысленных экспериментов можно вообще взять и рассмотреть определенную конфигурацию вещества с «выключенной» гравитацией (задав G равной нулю), а затем взглянуть на ту же конфигурацию, но уже после того, как гравитация была «включена» (задано очень большое значение G, такое, что гравитация стала играть важную роль).
Итак, Строминджер и Вафа рассматривали конфигурацию струн и бран в пяти измерениях, тщательно подобранную так, чтобы ее можно было изучать как с учетом гравитации, так и без нее. Когда гравитация была включена, выбранная ими конфигурация выглядела как черная дыра, и они знали, что значение энтропии для нее диктовалось формулой Хокинга. Однако когда гравитация была выключена, все это превращалось в эквивалент контейнера с газом, каким он может быть в теории струн. В этом случае ученые могли вычислять значение энтропии довольно традиционными способами (хотя и не без помощи серьезного математического аппарата, приличествующего всем этом струнным вопросам, которые они рассматривали).