Вечность. В поисках окончательной теории времени - Кэрролл Шон. Страница 98

Сразу же приходит в голову резонный вопрос: как выглядит высокоэнтропийное состояние, когда гравитация существенна? Если гравитация незначительна, то высокоэнтропийные состояния — это состояния термодинамического равновесия, в которых вещество равномерно распределено и имеет постоянную температуру (в зависимости от конкретной системы в деталях возможны расхождения — как у смеси масла с уксусом). Общее впечатление таково, что высокоэнтропийные состояния должны быть однородными, тогда как низкоэнтропийные состояния могут быть комковатыми. Понятно, что это всего лишь простой способ объяснить сложное, утонченное явление, но он может быть полезным ориентиром во множестве ситуаций. [243] Вспомните о том, что в соответствии с рассмотренной выше философией в стиле «давайте игнорировать гравитацию» ранняя Вселенная действительно была однородной.

Однако в поздней Вселенной, когда формируются звезды, галактики и кластеры, игнорировать влияние гравитации становится попросту невозможно. И мы замечаем нечто очень занимательное: привычная ассоциация «высокой энтропии» с «однородностью» с грохотом распадается.

Вечность. В поисках окончательной теории времени - img_70.jpg

Рис. 13.3. Роджер Пенроуз, человек, который больше всех старался привлечь внимание к загадке низкой энтропии ранней Вселенной.

Вот уже много лет сэр Роджер Пенроуз пытается убедить людей в том, что данное свойство гравитации — вещество становится комковатым по мере увеличения энтропии в поздней Вселенной — принципиально важно и должно играть значительную роль в космологических обсуждениях. Пенроуз прославился в конце 1960-х и начале 1970-х годов благодаря исследованиям, которые они проводили совместно с Хокингом с целью понять черные дыры и сингулярности в общей теории относительности, и он не только состоявшийся математик, но и признанный авторитет в мире физики. Он отличается поразительной въедливостью, и его забавляет изучение идей, решительно расходящихся с общепринятыми точками зрения в различных областях науки — от квантовой механики до исследования сознания.

Одна из областей, выбранных Пенроузом для того, чтобы заниматься своим любимым делом выискивания несоответствий в заветных чаяниях, — это теоретическая космология. В конце 1980-х годов, когда я был аспирантом, физики-теоретики, занимающиеся исследованием элементарных частиц, так же как и космологи, считали само собой разумеющимся, что истинной в итоге окажется та или иная версия инфляционной космологии (о ней мы поговорим в следующей главе); астрономы были намного осторожнее в своих высказываниях. Сегодня это убеждение получило еще большее распространение благодаря доказательствам, которые нам предоставляет космическое микроволновое излучение: небольшие изменения плотности в разных точках ранней Вселенной хорошо сочетаются с инфляционными предсказаниями. Тем не менее Пенроуз всегда относился к этим заявлениям с изрядной долей скептицизма, в основном вследствие неспособности инфляционных теорий объяснить низкую энтропию ранней Вселенной. Помню, еще будучи студентом, я читал одну из его статей; я понимал, что Пенроуз говорит нечто чрезвычайно важное, и ценил его точку зрения, но меня не оставляло чувство, что где-то он допустил ошибку. Мне потребовалось два десятилетия размышлений об энтропии, для того чтобы согласиться, что по большей части он все же был прав.

У нас нет полной картины пространства микросостояний в квантовой гравитации, и соответственно нет строгого понимания энтропии. Но существует простая стратегия, позволяющая справиться с этим препятствием: мы будем рассматривать то, что на самом деле происходит во Вселенной. Большинство из нас уверены в том, что эволюция наблюдаемой Вселенной всегда происходила в соответствии со вторым началом термодинамики, а энтропия увеличивалась с самого Большого взрыва, даже если в деталях мы все еще сомневаемся. Если энтропия стремится к увеличению и если во Вселенной постоянно происходит какой-то процесс, обратного которому мы никогда не наблюдаем, вероятно, этот процесс отражает увеличение энтропии.

В качестве примера можно привести «гравитационную нестабильность» поздней Вселенной. Мы уже много раз бросали фразы вроде «когда гравитация незначительна» и «когда гравитация существенна», но каковы критерии? Как понять, насколько важную роль играет гравитация и можно ли ею пренебречь? В целом, если взять какой-то набор частиц, их гравитационное взаимодействие всегда будет притягивать их друг к другу — гравитационная сила между частицами универсальна и работает на притяжение. (В противоположность, например, электромагнитным силам, которые могут быть как притягивающими, так и отталкивающими в зависимости от того, с какими типами электрических зарядов мы имеем дело. [244]) Однако существуют и прочие силы, которые можно объединить под названием «давление». Они предотвращают всеобщий коллапс в черную дыру. Земля, Солнце или яйцо не коллапсируют под действием собственного гравитационного притяжения, потому что каждый из этих объектов поддерживается давлением вещества внутри него. Это эмпирическое правило можно сформулировать так: «гравитация существенна» подразумевает «гравитационное притяжение множества частиц преодолевает давление, пытающееся не дать им сколлапсировать».

В очень ранней Вселенной температура высока, а давление невероятно велико. [245] Локальная гравитация между соседними частицами слишком слаба, для того чтобы они притягивались друг к другу, что сохраняет начальную однородность материи и излучения. Но по мере того как Вселенная расширяется и охлаждается, давление падает, и гравитация начинает доминировать. Это — эра «формирования структур», в которой изначально равномерно распределенная материя постепенно начинает сгущаться, формируя звезды, галактики и более крупные скопления галактик. Начальное распределение не было идеально однородным; в различных местах можно было обнаружить небольшие отклонения плотности. В более плотных областях гравитация сильнее притягивала частицы друг к другу, тогда как менее плотные регионы упускали частицы, позволяя им улетать к более плотным соседям, и становились еще более пустыми. Благодаря постоянному воздействию гравитации то, что когда-то было почти идеально однородным распределением материи, превратилось в нечто комковатое и становящееся все более и более неравномерным.

Вот что Пенроуз имеет в виду: во Вселенной формируются структуры, а энтропия возрастает. Он описывает это такими словами:

Связь гравитации с энтропией выглядит несколько непривычно, поскольку гравитационное взаимодействие всегда проявляется как притяжение. Мы привыкли иметь дело с энтропией обычного газа, который, будучи сконцентрирован в малой области, обладает низкой энтропией… а в состоянии теплового равновесия с высокой энтропией газ имеет однородное распределение. С гравитацией все обстоит наоборот. Однородная система гравитирующих тел будет обладать низкой энтропией (если только скорости этих тел не слишком велики, и/или тела не слишком малы, и/или они не находятся так далеко друг от друга, что вклад гравитации в энергию становится несущественным), тогда как высокая энтропия достигается, когда гравитирующие тела сливаются воедино. [246]

Все это совершенно правильно и отражает очень важную идею. При определенных условиях, таких, например, которые можно наблюдать в современной Вселенной на больших масштабах, мы, несмотря на отсутствие у нас готовой формулы для энтропии системы, включающей гравитацию, можем с уверенностью заявлять, что энтропия возрастает по мере формирования структур и увеличения комковатости Вселенной.

К схожему выводу можно прийти и другим путем, посредством волшебства мысленных экспериментов. Рассмотрим текущее макросостояние Вселенной — какой-то набор галактик, темной материи и т. д., распределенных определенным образом по пространству. А теперь внесем одно-единственное изменение: вообразим, что Вселенная сжимается, а не расширяется. Что при этом должно происходить?