Микробы хорошие и плохие. Наше здоровье и выживание в мире бактерий. - Сакс Джессика Снайдер. Страница 54

Использование лизинов бактериофагов вместо целых вирусов позволяет также избежать опасностей, связанных с обменом генами и иммунными реакциями. При этом иммунная система не пытается очистить организм от лизинов с их маленькими молекулами, и они могут долгое время сохраняться в тканях, подобно традиционным антибиотикам. По словам Фискетти, за те лет десять, что он работает с лизинами, ему редко доводилось сталкиваться с выработкой устойчивости к ним у бактерий. “Мы всеми силами пытались стимулировать ее выработку”, — говорит он и описывает эксперименты, в которых бактерий подвергали воздействию низких концентраций препарата, а затем искали обладателей частичной устойчивости среди выживших. “Но бактерий никогда нельзя недооценивать, — предупреждает он. — Может быть, устойчивость к лизинам им и сложнее выработать, чем устойчивость к традиционным антибиотикам. Но рано или поздно это случится”.

Что же до того, дождемся ли мы появления лизиновых антибиотиков, Фискетти надеется, что уже нашел необходимые источники финансирования, чтобы в ближайшие несколько лет начать испытания таких средств на людях. Ему помогает то, что у него уже имеется больше двадцати патентов на различные вещества, в том числе необычайно широкий патент на использование любых фаговых лизинов для профилактики инфекций путем очищения кожи, слизистых оболочек или кишечника человека от микробов, склонных вызывать неприятности.

Наиболее перспективным направлением использования целых фагов, предсказывает Фискетти, станет применение их для уничтожения устойчивых к антибиотикам бактерий вне организмов, например в больницах и в домах престарелых. Исследователи из компании Intralytix в настоящее время разрабатывают как раз такое содержащее фагов средство для дезинфекции, действующее специфически на листерий. Этот аэрозоль, по словам Сулаквелидзе, идеально подойдет для использования на предприятиях пищевой промышленности, особенно для обеззараживания таких известных мест скопления бактерий, как системы кондиционирования воздуха и водостоки. “Даже высокие концентрации химикатов нередко не позволяют уничтожить всех бактерий в таких местах, — объясняет он. — Листерии плодятся там вновь и вновь”. В таких ситуациях целые фаги могут иметь преимущество перед их лизинами, потому что сами вирусы способны сохраняться там и размножаться, пока им есть кого заражать.

Компания Intralytix уже получила официальное разрешение на тестирование одного из дезинфицирующих средств, разработанных ее сотрудниками, на птицефабриках и начала сотрудничество с исследовательской службой Министерства сельского хозяйства США для тестирования фаговых аэрозолей и жидкостей на зараженных листериями и сальмонеллами продуктах, хотя полученные результаты оказались неоднозначными. Другие исследовательские группы пытались применять фагов для снижения уровня бактериального загрязнения мяса. Особенно успешно такие испытания прошли фаговые аэрозоли, распыляемые на поверхность сырой говядины, свинины и мяса птицы. Не столь успешными оказались опыты по добавлению фагов в корм животных непосредственно перед забоем.

Коконы и лягушачья слизь

Примерно в то же время, когда западная наука повторно открыла методы фаговой терапии, научные журналы полнились сообщениями о еще одном “естественном” средстве борьбы с микробами. Молекулы антимикробных пептидов состоят из крошечных цепочек аминокислот — как в молекулах белков, только меньше. До 1981 года их совсем не замечали среди множества более сложных бактерицидных веществ, содержащихся в слезах, слизистых выделениях и других жидкостях многоклеточного организма. Но в тот год шведский микробиолог Ханс Боман выделил два антимикробных пептида (АМП) из покоящихся куколок гигантской ночной бабочки церкопии (Hyolophora cecropio) и назвал их в ее честь церкопинами. Церкопины, выделенные Боманом, убивали широкий набор бактерий, но оказались совершенно безвредными для небактериальных (эукариотических) клеток. Это замечательное открытие частично объясняло, как насекомые и другие беспозвоночные животные противостоят инфекциям, не имея антител, Г-клеток и β-клеток, которыми вооружены более “адаптивные” иммунные системы высших животных. Четыре года спустя патолог из Калифорнийского университета в Лос-Анджелесе Роберт Лерер открыл, что в организме человека (а вероятно, и в организмах всех других форм многоклеточной жизни) АМП тоже синтезируются. Он обнаружил их упакованными в пожирающие бактерий иммунный клетки — так называемые нейтрофилы. Лерер назвал эти человеческие АМП дефензинами.

Идея использовать АМП в медицине в качестве противобактериальных препаратов пришла в следующем, 1986 году в голову одному сердобольному исследователю из Национальных институтов здравоохранения, имевшему привычку не убивать подопытных лягушек, у которых он извлекал икру, а оставлять их в живых и зашивать разрезы, которые дЛЯ этого требовалось сделать. Майкл Заслофф изучал работу генов на удобном материале — больших и прозрачных икринках шпорцевой лягушки. Введя самке лягушки обезболивающее и хирургическим способом удалив ее икру, он тратил несколько секунд на то, чтобы наскоро зашить разрез, и выпускал лягушку обратно в мутную воду аквариума, к ее сестрам. Однажды, доставая нескольких мертвых старых лягушек из этой зеленой воды, Заслофф обратил внимание на примечательное состояние тех лягушек, которых он уже оперировал. Хотя он не только не стерилизовал свой скальпель, но и не чистил сколько-нибудь регулярно аквариум, разрезы на теле этих лягушек прекрасно заживали, без малейших признаков воспаления. Заслофф заподозрил, что в слизистой коже земноводных должна содержаться особенно сильно действующая разновидность вещества, подобного церкопинам Бомана или дефензинам Лерера.

Гомогенизировав образцы кожи нескольких лягушек, которыми пришлось пожертвовать, он выделил два антимикробных пептида, обладавших, как он утверждал, широким антибиотическим действием, причем более сильным, чем какое-либо другое из известных науке веществ. Он назвал их магайнинами — от слова, означающего на иврите “щит”, и в 1987 году опубликовал свои открытия, получившие широкое признание. В прессе вокруг антимикробных пептидов, как и вокруг фазовой терапии, вскоре поднялась шумиха. После хвалебной заметки в разделе новостей “Нью-Йорк тайме” опубликовала редакционную статью, где достижения Заслоффа ставились в один ряд с достижениями не только Александра Флеминга, открывшего пенициллин, но также Говарда Флори и Эрнста Чейна, потративших десяток лет на то, чтобы сделать из пенициллина работающий лекарственный препарат. “Д-р Заслофф благодаря огромным возможностям современных биологических технологий, прошел все этапы сам, причем всего за один год”, — писали редакторы, отмечая, что это открытие приспело как нельзя вовремя, чтобы спасти человечество от нарастающей критической ситуации с устойчивостью к антибиотикам. “Даже если сбудется лишь часть из того, что обещают лабораторные эксперименты с этими веществами, — говорилось в заключении статьи, — это все равно будет означать, что д-р Заслофф сумел найти достойного преемника пенициллину”.

Дальнейшие исследования показали, каким образом антимикробные пептиды избирательно губят бактерий. Их молекулы несут слабый положительный заряд и поэтому прилипают к отрицательно заряженным наружным поверхностям бактериальных мембран, но не к почти лишенным заряда мембранам животных клеток. Прилипнув к поверхности микроба, молекула пептида меняет свою форму так, что пронзает оболочку клетки. Пронизанная такими отверстиями, бактерия “истекает кровью”, только в обратном направлении: она гибнет от воды, хлещущей в клетку снаружи.

Заслофф полагал, что нашел у микробов настоящую ахиллесову пяту. “Несмотря на свое древнее происхождение, антимикробные пептиды по-прежнему остаются эффективными орудиями защиты, опровергая всеобщее убеждение, что бактерии, грибы и вирусы могут выработать устойчивость к любому вообразимому веществу и рано или поздно ее выработают”, — заявлял он. Казалось, что бактериям, чтобы выработать устойчивость к этим пептидам, пришлось бы принципиально изменить физическую структуру своих мембран, изменив их электрический заряд, что невозможно, как доказывали Заслофф и его единомышленники. Такая самоуверенность была настоящим искушением судьбы. Но результаты исследований Заслоффа, судя по всему, подтверждали этот вывод.