Следы былых биосфер, или Рассказ о том, как устроена биосфера и что осталось от биосфер геологическо - Лапо Андрей Витальевич. Страница 39
II биогеохимический принцип Вернадского получает подтверждения на самом разнообразном эмпирическом материале. Так, в 1956 г. почвовед Виктор Абрамович Ковда, ныне член-корреспондент АН СССР, обобщил результаты химического исследования более 1300 образцов золы современных высших растений. На этом обширнейшем фактическом материале автор пришел к выводу, что (за несколькими исключениями) зольность растений возрастает от представителей древних таксонов к более молодым. Эта закономерность свидетельствует о все более активном вовлечении растениями минеральных веществ в биогеохимический круговорот и является одним из частных проявлений II биогеохимического принципа. Вообще его проявления в биосфере очень многообразны и довольно неожиданны.
Возьмем другой пример из области ботаники.
Магаданский ботаник доктор биологических наук Андрей Павлович Хохряков недавно установил своеобразную направленность эволюции высших растений — интенсификацию смен органов в ходе индивидуального развития организма. Так, по мнению Хохрякова, у древних древовидных плаунов — лепидодендронов — смене была подвержена только часть листьев. У более продвинутых в эволюционном отношении растений — папоротникообразных — опадают также только листья, но у них в единицу времени по отношению к массе всего тела сменяется большая их часть, чем у лепидодендронов. У наиболее примитивных голосеменных — саговников — сменам также подвержены только листья, да и то за исключением оснований. У хвойных периодически сменяются ветви и кора. Наконец, на примере цветковых растений мы наиболее четко видим переход от многолетних форм (деревья и кустарники) к однолетним (травы). Этот же переход наблюдается и у других таксонов высших растений: среди древних хвощей и плаунов господствовали древовидные формы, а современные нам хвощи и плауны — травы; среди папоротников в геологическом прошлом было много древовидных, а сейчас древовидные папоротники вымирают. Такая интенсификация смен, естественно, приводит к усилению биогенной миграции атомов в биосфере. И здесь «работает» II принцип… Правда, хвойные почему-то не хотят становиться травами, а мхи, наоборот, никогда не были деревьями.
А. П. Хохряков, будучи ботаником, рассматривает только растения; в более широком плане подошел к вопросу о направленности эволюции крупный советский геохимик, профессор Александр Ильич Перельман. Он вычислил, что по отношению логарифмов ежегодной продукции к «моментальной биомассе» живого вещества (коэффициент К) современные экосистемы образуют следующий ряд:
I. Таежные ландшафты (0,54—0,55).
II. Ландшафты влажных лиственных лесов:
а) умеренного пояса (0,59—0,62);
б) субтропического пояса (0,66);
в) тропического пояса (0,68).
III. Травяные ландшафты (0,83—0,95).
Можно предполагать, что это — своеобразный «эволюционный ряд» ландшафтов и что несуществующие ныне ландшафты имели значение К меньше 0,5.
Наконец, III биогеохимический принцип также связан со «всюдностью» или «давлением» жизни. Этот фактор обеспечивает безостановочный захват живым веществом любой территории, где возможно нормальное функционирование живых организмов. В связи с этим рассмотрим, как происходило освоение жизнью поверхностной оболочки Земли.
В первые десятилетия нашего века ни у кого не было сомнений, что жизнь на Земле появилась лишь в кембрии, т. е., по современным датировкам, около 600 млн. лет назад. Честь открытия докембрийских микробиот принадлежит знаменитому американскому геологу Чарлзу Д. Уолкотту (1850—1927), высказавшему идею о бактериогенном происхождении докембрийских известняков и опубликовавшему в 1915 г. первую заметку с описанием остатков микроорганизмов из этих отложений. Идея Уолкотта показалась современникам абсурдной («этого не может быть, потому что не может быть никогда», используя крылатое выражение А. П. Чехова), а его описание докембрийских микроорганизмов не было принято всерьез. Сейчас Ч. Д. Уолкотта по праву называют пионером палеонтологии докембрия; учреждена специальная медаль «За изучение организмов докембрия», которая носит его имя.
Другим первооткрывателем докембрийских микробиот является В. Грюнер, в 1922 г. описавший органические остатки из протерозойских железорудных формаций штата Миннесота (США). Собственно, исследованиями Ч. Д. Уолкотта и В. Грюнера и исчерпывались сведения о докембрийской жизни к тому моменту, когда Вернадский сформулировал свой знаменитый тезис об отсутствии в истории Земли безжизненных геологических эпох.
Новый этап исследований начался в 40‑е годы. В 1939 г. изучением органических остатков докембрия начал заниматься А. Г. Вологдин (впоследствии — лауреат медали имени Уолкотта); в 1943 г. он организовал в Палеонтологическом институте АН СССР лабораторию по изучению древнейших организмов. В 1947 г. австралийский геолог Р. Спригг опубликовал первое описание фауны, впоследствии ставшей известной всему миру под названием «эдиакарской». Несколько лет спустя американские ученые С. А. Тайлер и Э. С. Бархгорн при микроскопическом исследовании протерозойских пород Канадского щита открыли хорошо сохранившиеся органические остатки.
Крупнейшим событием в развитии науки о древнейшей жизни явился Всесоюзный симпозиум по палеонтологии докембрия и раннего кембрия, проходивший в Новосибирске осенью 1965 г. После этого симпозиума словосочетание «палеонтология докембрия» перестало шокировать даже самых отчаянных скептиков. Публикации по новой отрасли знаний пошли широким потоком. «С удивительной быстротой мы стали проникать в глубины времени и теперь твердо знаем, что менее чем шестистам миллионам лет фанерозойской палеонтологической истории предшествовали по крайней мере еще три миллиарда лет жизни», — сказал академик Б. С. Соколов.
В настоящее время данные о древнейшей жизни основываются главным образом на изучении следующих объектов: а) так называемых акритарх — микроископаемых неустановленной природы, скорее всего относящихся к фитопланктону; б) строматолитов — слоистых карбонатных образований, возникших в результате жизнедеятельности цианобактерий и бактерий; в) минерализованных остатков прокариот, «запечатанных» в кремнях. Помимо этого, производятся изотопные исследования докембрийских пород, поскольку известно, что у углерода и серы соотношение изотопов пригодно для распознавания абиогенных и биогенных объектов.
В нашей стране наибольшее развитие получили исследования строматолитов. Знаменательна фраза известного американского ученого профессора Престона Клауда в докладе на 27‑м Международном геологическом конгрессе: «Говорить о строматолитах на Московской сессии Международного конгресса все равно, что ехать в Тулу со своим самоваром». В последние годы в СССР успешно развивается изучение минерализованных остатков докембрийских прокариот, осуществляемое во Всесоюзном геологическом институте имени А. П. Карпинского В. К. Головенком и М. Ю. Беловой.
В результате исследований, проведенных за последние четверть века, вырисовывается следующая картина развития биосферы на ранних этапах ее эволюции (табл. 7).
Таблица 7
Геохронологическая шкала и основные события истории биосферы
Дата рождения Земли — 4,6—4,7 млрд. лет назад — установлена по космохимическим и астрофизическим данным. Земля в это время подвергалась интенсивной метеоритной бомбардировке. Каковы были физико-химические условия ка поверхности, сказать трудно, однако ясно, что они были иными, чем в течение всей последующей геологической истории. Существование жизни в это время на Земле маловероятно, а геологические образования этого возраста неизвестны.
Возраст древнейших метаосадочных пород Земли — 3,8 млрд. лет (формация Исуа в Юго-Западной Гренландии). Остатков живых организмов в них не найдено, однако изотопный состав углерода однозначно свидетельствует об активных процессах жизнедеятельности, происходивших в то время. Таким образом, «начало геологической и биологической истории совпадает с точностью до сотен миллионов лет» [64].