Рассказы о драгоценных камнях - Петров Валерий Петрович. Страница 7
Извержение Олдоньи-Лянгаи помогло решить основной вопрос генезиса карбонатитов. Оказывается, карбонатная магма существует, следовательно, Брёггер был прав: карбонатитовые массивы являются магматическими телами. Карбонатитовые интрузии сложены рядом весьма разнородных пород и собственно карбонатитов — карбонатных пород — и ультраосновных существенно оливиновых и пород, богатых щелочами. Сейчас можно предполагать, что при образовании этих массивов по каналу поднимались одновременно несколько несмешивающихся жидкостей, подобно тому как из нефтяных пластов по буровым скважинам одновременно поднимаются нефть и вода. Представляется несомненным, что карбонатитовая магма содержит много растворенных летучих веществ. В процессе остывания и кристаллизации расплавов эти летучие вещества выделяются из расплава и уже в новых условиях низких температур взаимодействуют с уже затвердевшими породами, изменяя и перекристаллизовывая их. Сейчас ученые спорят только о масштабах этого воздействия летучих.
В Советском Союзе усиленно изучают большое число таких ультраосновных — щелочных или попросту карбонатитовых — интрузий. Особенно широко распространены они на Кольском полуострове и на севере Сибири в пределах Красноярского края. Именно в Красноярском крае расположена относительно небольшая карбонатитовая интрузия «Кугда», где был встречен ювелирный хризолит. Для этой интрузии характерны округлые формы и большое разнообразие слагающих ее пород. На некотором удалении от главной трубки есть несколько мелких, тоже более или менее изометрических тел, отходящих от главного. Присутствие этих мелких тел можно рассматривать как одно из доказательств магматического генезиса всего массива Кугда.
Прозрачный хризолит встречается в жилах среди оливиновых пород. Наибольшее количество (несколько десятков) таких жил встречено в юго-восточной части массива. Мощность их несколько сантиметров, длина до 40 м. Количество хризолита в жиле порядка 1—10 %; остальное — непрозрачный оливин, флогопит (магнезиальная слюда) и серпофит (водный силикат магния). Хризолит красивого зеленого цвета, иногда с желтовато-зеленым или оливково-зеленым оттенком. Размер обломков кристаллов от 2 до 15 мм; наиболее часто встречаются зерна 3X5X5 мм. Некоторые зерна трещиноваты. Прозрачные зерна хорошо режутся, шлифуются и полируются. Отшлифованные камни из хризолита Кугды очень красивы. На поверхности массива в рыхлых отложениях также встречаются обломки ювелирного хризолита. Их можно рассматривать как хризолитовые россыпи.
Кроме массива Кугда, крупные зерна хризолита встречаются, видимо, и на других подобных же массивах этого района. В частности, они отмечаются в массиве Бор-Урях. Несмотря на иные условия залегания, месторождение это по условиям своего образования очень близко к описанным египетскому и восточносаянскому. Месторождение Кугды, как пишут, разрабатывается. На хризолит отсюда даже составлены требования к сырью. Были встречены ювелирные разности оливина (хризолит) в Ковдорском месторождении на Кольском полуострове.
Обратимся теперь к месторождениям хризолита принципиально иного характера, к которому можно отнести прозрачный оливин — хризолит, связанный с глубинными алмазоносными кимберлитами. Оливин вообще весьма распространен в кимберлитах, но крупные зерна встречаются крайне редко, только в некоторых разностях. В литературе указывается, что среди якутских алмазоносных кимберлитов наилучшие кристаллы оливина встречаются в трубках Удачная и Дальняя. Крупные обломки кристаллов хризолита встречаются в мелкозернистой (базальтоидной) основной массе из оливина, флогопитовой слюды, пиропового граната и руды. Форма обломков неправильная, угловатая. Окраска хризолита красивая — светло-зеленая, иногда оливково-зеленая, фисташково-зеленая или винно-желтая. Некоторые зерна мутные и трещиноватые, но большинство зерен красивы и прозрачны. Размер зерен от 0,5 до 7–8 мм, иногда они достигают 10–15 мм.
Была сделана попытка извлечь ювелирный хризолит из хвостов — пустой породы, оставшейся после извлечения алмазов. Были разобраны 25 м3 хвостов и при этом отобрано около 4 кг хороших кристалликов размером больше 5 мм. Однако трудности извлечения так велики, что вряд ли можно рассчитывать на экономически выгодную попутно с алмазом добычу и этого драгоценного камня. В зарубежной литературе пока нет данных об извлечении хризолита из кимберлитов.
Последний, третий тип месторождений, дающих крупные кристаллы оливина-хризолита, представляют американские месторождения, расположенные в восточной части штата Аризона и на западе штата Нью-Мексико. Эти месторождения связаны с мощными лавовыми покровами системы Датил. Лавы здесь излились на поверхность всех пород, выходивших на дневную поверхность, начиная от пород палеозоя (образованных 300 млн. лет тому назад и раньше), пород мела и даже лежащих на них четвертичных галечников. Иначе говоря, перед излияниями лав все эти породы должны были выйти на дневную поверхность, претерпеть размыв и выравнивание. На этой выровненной поверхности должны были сформироваться молодые галечники, возраст которых всего единичные миллионы лет. Только после этих преобразований могли вылиться еще более молодые лавы. Однако бурная геологическая деятельность, имевшая место в этой части Америки в более позднее время, привела к тому, что местность, покрытая лавами, претерпела интенсивный подъем и новый размыв. Таким образом, базальты сохранились только на вершинах гор — останцов былой лавовой равнины. Оливин, в том числе ювелирные кристаллы (более 2 мм), встречаются в виде скоплений крупных или мелких зерен.
Наиболее крупное месторождение Сан-Карлос располагается в штате Аризона, на вершине горы Перидот-Меза. Оливиновые скопления наблюдаются как в самих базальтах, так и в подстилающих их туфах. Имеются здесь и другие подобные же месторождения, но добыча камня везде относительно сложна, за исключением тех мест, где хризолит добывается из разрушенных базальтов. Близкие по типу месторождения хризолита описаны в Забайкалье и в прилегающей Северной Монголии, в местности Шаварын-Царам близ сомона Тариат. Хризолит и очень красивый, густо окрашенный пироповый гранат встречаются как включения в очень молодом (четвертичном) базальте.
Скопления оливина того типа, как это описывается для американских базальтов, известны давно и интенсивно изучаются петрографами. Такие скопления именуются оливиновыми бомбами, и им придается большое теоретическое значение. Имеются два предположения. Первое — подобными породами слагается мантия Земли, ее глубинная часть, залегающая под земной корой, и базальтовая магма, формирующаяся в мантии, отрывает куски стенок той камеры, в которой эта магма помещалась в мантии, и выносит оторванные куски к поверхности в виде оливиновых бомб. Второе предположение — оливиновые бомбы являются остатком от частичного плавления мантии при образовании базальтовой магмы. Различие этих двух предположений сводится в конечном итоге к разным представлениям о природе мантии. По первому — мантия чисто оливиновая, а по второму — сильно отличается от чистого оливина; когда из этого гипотетического первоначального состава был удален (выплавлен) базальт, остался чистый оливин. Независимо от того, кто прав, оливиновые бомбы, видимо, являются тем своеобразным окошком, которое позволяет хотя бы отчасти заглянуть в глубины Земли.
Недавно выявилась еще одна возможность использовать оливиновые бомбы для познания процессов, происходящих в земных глубинах. Новосибирские физико-химики, исходя из различий плотности базальта и оливиновых бомб и скорости подъема магмы, рассчитывали возможную глубину, с которой могут быть вынесены эти бомбы. Многое пока здесь гадательно, но метод такого расчета, кажется, найден правильно, и, возможно, дальнейшие исследования смогут дать ценные для науки результаты. Так или иначе, но оливиновые бомбы — интереснейшее для теории природное образование, а данные об американских и монгольских месторождениях, хризолита говорят, что они интересны и практически.