Жизнь и мечта - Ощепков Павел Кондратьевич. Страница 46
Уникальный характер, высокая стоимость, ответственное назначение этих сооружений определяют необходимость обеспечения самой высокой степени надежности.
Повышенные же требования к надежности, в свою очередь, диктуют необходимость развития новых методов получения информации о свойствах тел.
Ярко выраженная тенденция современного технического прогресса — непрерывное увеличение концентрации материально-технических средств и инженерной мысли в одном сооружаемом объекте, будь то воздушный лайнер или ракета, атомоход или автоматизированная домна. Примеры мы видим всюду.
184
Достаточно сказать, что каждая из машин Красноярской гидроэлектростанции по своей мощности эквивалентна почти десяти Волховским гидроэлектростанциям. Мощности тепловых энергоблоков достигли почти фантастических размеров. Вдуматься только, какому количеству предприятий дают жизнь такие энергоцентры!
От надежности, от бесперебойной работы гигантских энергетических систем зависит жизнедеятельность не только отдельных фабрик и заводов, но и целых экономических районов. А если учесть, что современные тепловые энергоблоки в своем устройстве содержат километров 100 и более труб в одном агрегате и что любой сантиметр этих труб может вывести из строя всю эту гигантскую систему, то станет совершенно очевидным, почему требования к надежности, к качеству каждого сантиметра таких труб теперь неизмеримо возросли. Не менее важна проблема надежности и в других областях техники. Требования к качеству теперь настолько повысились, что их можно было бы охарактеризовать стопроцентной гарантией, теоретически степень надежности должна быть не ниже, чем 99,99999999%.
Технико-экономическая эффективность любого нового технического сооружения теперь определяется не столько достигнутыми при этом высокими техническими параметрами, что, конечно, также очень важно, сколько долговременностью работы машины, агрегата, сооружения, конструкции и т. п. Именно это в конечном счете определяет их технико-экономическую эффективность, только в этом случае затраты общества на их сооружения могут быть оправданы.
При скоростном и поточном производстве многих видов изделий (металлических труб, листов, слябов, блюмсов, резиновых смесей, шин), при автоматической сварке металлов и сплавов, в производстве ответственных керамических изделий, пластмасс, стеклопластиков и т. п. также необходимы более надежные и более быстрые методы получения информации о ходе технологических процессов и качестве продукции, с тем чтобы эти данные могли быть непосредственно использованы для управления и корректировки самих технологических процессов.
Интроскопия как новый многоэлементный метод информации, несомненно, послужит очень ценным средством для решения подобных задач. В ряде случаев методы интроскопии уже стали практически необходимыми при ускоренном контроле технологических процессов.
185
Схема преобразования «фотокатод — экран»
Если иметь в виду различные виды излучений (от гамма-квантов высоких энергий до радиоволн миллиметрового диапазона и от упругих колебаний высокой частоты до корпускулярных излучений) и их спектральный состав, то мы можем сказать, что в природе нет непрозрачных тел. Все зависит от правильности выбора вида и спектрального состава излучения. Для лучей нейтрино, например, и шар земной прозрачен.
Человеческая кровь в соответствующих условиях прозрачна даже в ближней инфракрасной области излучений, а большинство тканей живого организма прозрачно в области 12—14 микрон. Металлы и жидкости хорошо пропускают, как известно, ультразвуковые волны и кванты высоких энергий.
С точки зрения физических законов распространения и поглощения указанных видов излучений в твердых и жидких телах постановка проблемы интроскопии вполне правомерна. Но правомерна ли ее постановка в наше время с точки зрения технических возможностей решения? Положительный ответ мы должны дать и здесь.
Успехи современной физики, а технической электроники в особенности, дают нам ключ к решению указанной проблемы.
Под видением в непрозрачных средах и телах я понимаю прежде всего прямое оптическое видение в отраженных и рассеянных лучах с заданным коэффициентом трансформации размеров изображений.
186
Чтобы показать реальность разрешения проблемы интроскопии уже в наше время, остановимся для примера на одном из видов техники этого рода — на инфракрасной интроскопии.
Выбор этот не случаен. Принцип видения в непрозрачных средах и телах в настоящее время можно наиболее наглядно показать именно на примере применения для этой цели инфракрасных лучей, так как техника преобразования их в оптически видимые изображения хорошо разработана.
Приборы, преобразующие невидимые инфракрасные лучи в оптически видимые, получили название электронно-оптических преобразователей (сокращенно — ЭОП).
Впервые такой преобразователь был создан в 1934 г. голландским физиком Холстом де Буром. В дальнейшем системы ЭОП были усовершенствованы многими авторами. В настоящее время они являются уже вполне отработанными техническими приборами и могут применяться для решения ряда практических задач.
Кратко устройство и принцип действия электроннооптических преобразователей инфракрасных лучей можно изложить так. В вакууме на две параллельные, обращенные одна к другой стеклянные поверхности наносятся два слоя с особыми свойствами. Один из них (первый по ходу лучей) является фотокатодом, чувствительным к инфракрасным лучам указанного диапазона волн, другой представляет собой тонкий слой вещества, способного светиться под ударами электронов — флюоресцирующий экран. Под действием инфракрасных лучей с фотокатода вылетают, или, как говорят, эмитируют, электроны. При этом плотность электронного потока с отдельных участков фотокатода пропорциональна интенсивности инфракрасного излучения, падающего на эти участки.
Между фотокатодом и флюоресцирующим экраном приложено высокое напряжение, служащее для ускорения электронов. Двигаясь в поле этого высокого напряжения, электроны за счет поля приобретают дополнительную энергию и в таком виде падают на флюоресцирующий экран. Яркость свечения экрана в этом случае пропорциональна величине приложенного ускоряющего напряжения и плотности электронного тока при некоторых постоянных коэффициентах, характеризующих качество люминофоров.
187
Таким образом, при постоянном значении приложенного ускоряющего напряжения существует прямая зависимость между яркостью свечения каждого участка люминофора и величиной падающего на него электронного потока. Если на фотокатод было спроектировано изображение в невидимых для глаза инфракрасных лучах, то на экране оно будет оптически видимым, так как величина электронного тока с каждого участка фотокатода, в свою очередь, пропорциональна интенсивности падающего на фотокатод инфракрасного излучения.
Благодаря такому устройству человек приобретает возможность различать предметы и изображения в инфракрасных лучах так же, как если бы он обладал способностью видеть в этих невидимых для глаза лучах.
В современных электронно-оптических преобразователях между фотокатодом и флюоресцирующим экраном обычно присутствует еще один элемент — электронная линза. Она необходима для более правильного переноса электрона с фотокатода на флюоресцирующий экран, для улучшения четкости передачи электронного изображения. По принципу выполнения линзы бывают электростатические и электромагнитные.
Имея любой из современных электронно-оптических преобразователей, в принципе нетрудно создать инфракрасный интроскоп того или иного назначения.
Общая схема интроскопа
188
Общая схема интроскопа в этом случае должна состоять из следующих основных элементов (см. рис.):
1 — источник инфракрасного излучения (тело накаливания или специальная газоразрядная лампа); 2 — светофильтр, служащий для отделения инфракрасного излучения от видимого света; 3 — объектив, формирующий изображение в инфракрасных лучах; 4 — электронно-оптический преобразователь; 5 — система наблюдения изображения, полученного на экране (непосредственно глазом или фотокамерой, если необходимо сохранить документацию полученного изображения); 6 — непрозрачное для видимого света тело, внутри которого необходимо просматривать структурные неоднородности, посторонние включения или нарушения сплошности.