Искусство схемотехники. Том 1 (Изд.4-е) - Хоровиц Пауль. Страница 14

В момент времени t = 0 схема подключается к батарее. Уравнение, описывающее работу такой схемы, выглядит следующим образом:

I = C(dU/dt) = (Uвх- U)/R

и имеет решение

UUвх + Ae-t/RC.

Не пугайтесь, если не поняли, как выполнено математическое преобразование. Важно запомнить полученный результат. В дальнейшем мы будем многократно его использовать, не прибегая к математическим выкладкам. Постоянная величина А определяется из начальных условий (рис. 1.32): U = 0 при I = 0, откуда А = — Uвх и UUвх(1 — e-t/RC).

Искусство схемотехники. Том 1 (Изд.4-е) - _44.jpg

Рис. 1.32.

Установление равновесия. При условии t >> RC напряжение достигает значения Uвх. (Советуем запомнить хорошее практическое правило, называемое правилом пяти RC. Оно гласит: за время, равное пяти постоянным времени, конденсатор заряжается или разряжается на 99 %.) Если затем изменить входное напряжение Uвх (сделать его равным, например, нулю), то напряжение на конденсаторе U будет убывать, стремясь к новому значению по экспоненциальному закону e-t/RC.

Например, если на вход подать прямоугольный сигнал Uвх, то сигнал на выходе U будет иметь форму, показанную на рис. 1.33.

Искусство схемотехники. Том 1 (Изд.4-е) - _45.jpg

Рис. 1.33. Напряжение, снимаемое с конденсатора (верхние сигналы), при условии, что на него через резистор подается прямоугольный сигнал.

Упражнение 1.13. Докажите, что время нарастания сигнала (время, в течение которого сигнал изменяется от 10 до 90 % своего максимального значения) составляет 2,2RC.

У вас, наверное, возник вопрос: каков закон изменения для произвольного Uвх(t)? Для того чтобы ответить на него, нужно решить неоднородное дифференциальное уравнение (стандартные методы решения таких уравнений здесь не рассматриваются). В результате получим

Искусство схемотехники. Том 1 (Изд.4-е) - _46.jpg

Согласно полученному выражению, RC- цепь усредняет входное напряжение с коэффициентом пропорциональности e-Δt/RC, где Δt = τ t. На практике, однако, такой вопрос возникает редко. Чаще всего рассматриваются частотные характеристики и определяют, какие изменения претерпевает каждая частотная составляющая входного сигнала. Скоро (разд. 1.18) мы также перейдем к этому немаловажную вопросу. А пока рассмотрим несколько интересных схем, для анализа которых достаточно временных зависимостей.

Упрощение с помощью эквивалентного преобразования Тевенина. Можно было бы приступить к анализу более сложных схем, пользуясь, как и раньше, методом решения дифференциальных уравнений. Однако чаще всего не стоит прибегать к решению дифференциальных уравнений.

Большинство схем можно свести к RC-схеме, показанной на рис. 1.34.

Искусство схемотехники. Том 1 (Изд.4-е) - _47.jpg

Рис. 1.34.

Пользуясь эквивалентным преобразованием для делителя напряжения, образованного резисторами R1 и R2, можно определить U(t) для скачка входного напряжения Uвх.

Упражнение 1.14. Для схемы, показанной на рис. 1.34, R1R2 = 10 кОм и С = 0,1 мкФ.  Определите U(t) и изобразите полученную зависимость в виде графика.

Пример: схема задержки. Мы уже упоминали логические уровни — напряжения, определяющие работу цифровых схем. На рис. 1.35 показано, как с помощью конденсаторов можно получить задержанный импульс.

Искусство схемотехники. Том 1 (Изд.4-е) - _48.jpg

Рис 1.35. Использование RC-цепи для формирования задержанного цифрового сигнала.

В виде треугольников изображены КМОП-буферные усилители. Они дают высокий уровень на выходе (более половины величины напряжения питания постоянного тока) и наоборот. Первый буферный усилитель воспроизводит входной сигнал и обеспечивает небольшое выходное сопротивление, предотвращая тем самым воздействие на источник сигнала RС-цепи (вопрос о нагрузке схемы мы рассмотрели в разд. 1.05). Согласно характеристике RС-цепи, выходной сигнал для нее задерживается относительно входного, поэтому выходной буферный усилитель переключается на 10 мкс позже скачка напряжения на входе (напряжение на выходе RС-цепи достигает 50 % своего максимального значения через 0,7RC.

На практике приходится принимать во внимание отклонение входного порога буфера от величины, равной половине напряжения питания, так как это отклонение изменяет задержку и ширину выходного импульса. Иногда подобную схему используют для того, чтобы задержать импульс на время, в течение которого может произойти какое-либо событие. При проектировании схем лучше не прибегать к подобным трюкам, но иногда они бывают полезны.

1.14. Дифференцирующие цепи

Рассмотрим схему, изображенную на рис. 1.36.

Искусство схемотехники. Том 1 (Изд.4-е) - _49.jpg

Рис. 1.36.

Напряжение на конденсаторе С равно Uвх — U, поэтому

I = Cd(Uвх - U)/dt = U/R.

Если резистор и конденсатор выбрать так, чтобы сопротивление R и емкость С были достаточно малыми и выполнялось условие dU/dt << dUвх/dt, то

C(dUвх/dt) = U/R или U(t)RC[dUвх(t)/dt].

Таким образом, мы получили, что выходное напряжение пропорционально скорости изменения входного сигнала.

Для того чтобы выполнялось условие dU/dt << dUвх/dt, произведение RC должно быть небольшим, но при этом сопротивление R не должно быть слишком малым, чтобы не «нагружать» вход (при скачке напряжения на входе изменение напряжения на конденсаторе равно нулю и R представляет собой нагрузку со стороны входа схемы). Более точный критерий выбора для R и С мы получим, когда изучим частотные характеристики. Если на вход схемы подать прямоугольный сигнал, то сигнал на выходе будет иметь вид, представленный на рис. 1.37.

Искусство схемотехники. Том 1 (Изд.4-е) - _50.jpg

Рис. 1.37. Выходной сигнал (верхний), снимаемый с дифференциатора, на вход которого подается прямоугольный сигнал.

Дифференцирующие цепи удобно использовать для выделения переднего и заднего фронтов импульсных сигналов, и в цифровых схемах можно иногда встретить цепи, подобные той, которая показана на рис. 1.38.