Искусство схемотехники. Том 2 (Изд.4-е) - Хоровиц Пауль. Страница 42

Искусство схемотехники. Том 2 (Изд.4-е) - _178.jpg

Рис. 8.47. RS-триггер.

Предположим, что оба входа А и В имеют высокий уровень. Тогда, в каком состоянии будут выходы X и Y? Если X будет иметь высокий уровень, то последний будет присутствовать на обоих входах вентиля G2, и устанавливать Y в состояние низкого уровня. Это согласуется с состоянием выхода X (высокий уровень), следовательно, все правильно. Не правда ли?

Х = В, Y = H.

Неверно! Схема симметрична, следовательно, правомерно будет и состояние, при котором

Х = Н, Y = B.

Состояние, когда оба выхода X и Y имеют высокий (или низкий) уровень, невозможно (вспомним, что А = В = высокий уровень). Таким образом, триггер имеет два устойчивых состояния (иногда его называют «бистабильной» схемой). В каком из этих двух состояний он окажется, зависит от его предыстории, т. е. он обладает памятью. Для того чтобы в эту память что-то записать, достаточно на один из входов триггера кратковременно подать низкий уровень. Например, после кратковременной подачи низкого уровня на вход А триггер гарантированно установится в состояние

Х = В, Y = H.

независимо от того, какое состояние он имел прежде.

Подавление дребезга контактов. Рассмотренный нами триггер со входами S (установки в «1») и R (установки в «0» или сброса) оказывается весьма полезным для многих применений. На рис. 8.48 показан типичный пример его использования.

Искусство схемотехники. Том 2 (Изд.4-е) - _179.jpg

Рис. 8.48. «Дребезг» переключения.

По идее эта схема должна открывать вентиль и пропускать входные импульсы, если ключ разомкнут. Ключ связан с землей (а не с шиной +5 В) из-за особенности биполярных ТТЛ-схем (в противоположность КМОП-элементам), состоящей в том, что вы должны обеспечить отвод тока от входа ТТЛ в состоянии низкого уровня (0,25 мА для LSTTL), в то время как в состоянии высокого уровня входной ток близок к нулю. Кроме того, обычно в устройствах имеется шина земли, удобная для подсоединения к ней ключей и других органов управления. При использовании такой схемы возникает проблема, обусловленная «дребезгом» контактов ключа. За время порядка 1 мс после замыкания ключа его контакты входят в соприкосновение друг с другом обычно от 10 до 100 раз. Вы получите в итоге форму сигналов, указанную на рисунке; если бы выход подключался к счетчику или регистру сдвига, то они наверняка отреагировали бы на каждый дополнительный импульс, вызванный этим дребезгом контактов.

На рис. 8.49 показано, как разрешить эту проблему.

Искусство схемотехники. Том 2 (Изд.4-е) - _180.jpg

Рис. 8.49. Схема подавления дребезга.

При первом же соприкосновении контактов триггер изменит свое состояние и в дальнейшем уже не будет реагировать на последующий дребезг, поскольку двухпозиционный однополюсный ключ не может совершать колебания до противоположной позиции. В результате дребезг выходного сигнала будет отсутствовать, как и показано на диаграмме. Такая схема подавления дребезга широко используется; так, микросхема `279 имеет четыре SR-триггера в одном корпусе. К сожалению, такая схема имеет небольшой недостаток. Дело в том, что первый импульс, возникающий на выходе вентиля после того, как он откроется, может оказаться укороченным: это можно определить по моменту, замыкания ключа по отношению к входной серии импульсов. То же самое относится и к конечному импульсу последовательности (разумеется, что и ключи без подавления дребезга имеют те же проблемы). В тех случаях, когда этот нежелательный эффект может оказать какое-то значение, применяется схема синхронизатора, которая позволяет его устранить.

Многовходовые триггеры. На рис. 8.50 показана еще одна простая схема триггера. В ней использованы вентили ИЛИ-НЕ: высокий уровень на входе устанавливает соответствующий выход триггера в состояние низкого уровня. Устанавливать или сбрасывать триггер различными сигналами можно благодаря наличию нескольких входов. На этом схемном фрагменте нагрузочные резисторы не используются, поскольку входные сигналы формируются где-нибудь в другом месте (с помощью стандартных выходов с активной нагрузкой).

Искусство схемотехники. Том 2 (Изд.4-е) - _181.jpg

Рис. 8.50.

8.17. Тактируемые триггеры

Триггеры, выполненные на двух вентилях, как показано на рис. 8.47 и 8.50, обычно называют RS (от английских слов: set — «установка» и reset — «сброс»), или асинхронными триггерами. Посредством подачи соответствующего входного сигнала они могут быть установлены в то или иное состояние. RS-триггеры удобно использовать в схемах защиты от дребезга, а также во многих других случаях, однако более широкое применение получили триггеры, схема которых несколько отличается от рассмотренной. Вместо пары асинхронных входов они имеют один или два информационных входа и один тактирующий вход. В момент подачи тактирующего импульса выходное состояние триггера либо изменяется, либо остается прежним, в зависимости от того, какие сигналы действуют по информационным входам.

Простейшая схема тактируемого триггера приведена на рис. 8.51.

Искусство схемотехники. Том 2 (Изд.4-е) - _182.jpg

Рис. 8.51. Синхронизированный триггер.

От рассмотренной выше схемы она отличается наличием двух вентилей («SET» и «RESET»). Легко проверить, что таблица истинности для этого триггера будет иметь вид

Искусство схемотехники. Том 2 (Изд.4-е) - _183.jpg

где Qn + 1 — состояние выхода Q после подачи (n + 1)-го тактового импульса, а Qn — до его поступления. Главное отличие этой схемы от предыдущей состоит в том, что входы S и R в этом случае должны рассматриваться как информационные и сигналы, присутствующие на этих входах в момент поступления тактового импульса, и определяют, что произойдет с выходом Q.

У этого триггера есть один недостаток. Дело в том, что изменение выходного состояния в соответствии со входными сигналами может происходить в течение всего отрезка времени, на котором тактовый импульс имеет высокий уровень. В этом смысле он еще подобен асинхронному RS-триггеру. Эта схема известна также под названием «прозрачный фиксатор», потому что выход «насквозь просматривает» вход в течение интервала действия тактового сигнала.

Всесторонние возможности триггерных схем раскроются после введения новых, нескольких отличных от рассмотренных конфигураций, которые представляют собой триггер типа «ведущий-ведомый» (двухступенчатый) и триггер, запускаемый по фронту.

Триггеры типа «ведущий-ведомый» и триггеры, запускаемые по фронту. Эти типы триггеров наиболее распространены. Информация, поступившая на входные линии этого триггера к моменту возникновения перехода или «фронта» тактового сигнала, определяет, каким будет состояние выхода в последующий интервал времени. Такие триггеры выпускаются в виде недорогих ИМС и всегда используются в этом виде, но для того чтобы понять, как они работают, имеет смысл рассмотреть их внутреннюю структуру. На рис. 8.52 показаны принципиальные схемы так называемых D-триггеров.