Путеводитель в мир электроники. Книга 2 - Семенов Борис Юрьевич. Страница 57

Путеводитель в мир электроники. Книга 2 - _263.jpg

Важно отметить, что если внутри традиционно принадлежащего ТТЛ обозначения 74 встретится буква С, например НС, это означает, что данная микросхема принадлежит к семейству КМОП микросхем, но совместима с ТТЛ.

Четвертая позиция — цифры, обозначающие функциональное назначение цифровой микросхемы в пределах серии.

Пятая позиция — буква, обозначающая тип корпуса микросхемы (аналогично четвертой позиции в первом виде маркировки).

Шестая позиция — суффикс, который может содержать отбраковочную информацию, код температурного диапазона и другие не слишком важные для радиолюбителя сведения.

Пример маркировки второго вида: DV74LS244D.

В дальнейшем мы расскажем о наиболее популярных сериях отечественных цифровых микросхем и приведем их зарубежные аналоги. Нам предстоит также подробнее узнать о технологиях ТТЛ и КМОП, их достоинствах и недостатках, перспективах, особенностях использования в схемах.

Распространенные серии

Мудр тот, кто знает не многое, а нужное.

Эсхил

Перед нами стоит нелегкая задача — рассказать о практически используемых сериях цифровых микросхем. Трудность заключается в том, что в арсенале радиолюбителей обычно содержится опыт работы с сотней-другой цифровых микросхем. Рассказать о таком количестве в рамках этой книги просто не представляется возможным. Поэтому мы решили выбрать из всего этого длинного списка наиболее часто встречающиеся, распространенные, и рассказать на их примере об общих принципах устройства микросхем, их достоинствах и недостатках. В последующих главах, при изготовлении схем или самостоятельном конструировании цифровых самоделок, работа микросхем вам будет более понятна.

Первые цифровые микросхемы

Разберемся в технологиях изготовления микросхем, скрывающихся за пока непонятными буквами ТТЛ, КМОП, ТТЛШ, РТЛ, ДТЛ. Вообще-то значительные, принципиальные отличия имеют микросхемы, производимые по технологиям ТТЛ и КМОП, а сокращенные наименования ТТЛШ, РТЛ, ДТЛ относятся к действующей технологии ТТЛ и ее ранним модификациям.

Что такое ТТЛ? Это всего-навсего «транзисторно-транзисторная логика».

Уместна ли такая тавтология? Нет ли здесь «масла масляного» по известной поговорке? Ее предшественники РТЛ («резисторно-транзисторная логика») и ДТЛ («диодно-транзисторная логика») имеют более благозвучные названия. Примерно так же — необычно — звучит название прогрессивной технологии ТТЛШ — «транзисторно-транзисторная логика с элементами на основе барьеров Шоттки», технологии, позволяющей значительно повысить быстродействие микросхем и снизить их энергопотребление. Спешим обрадовать читателя: тавтология здесь если и есть, то в необходимом объеме, поясняющем суть работы цифровых элементов. Чтобы почувствовать, что это действительно так, обратим внимание на рис. 14.6, на котором изображен один и тот же элемент — 3ИЛИ-НЕ, но реализованный в разных технологиях. Необычный транзистор VT1, изображенный на рис. 14.6, в, называется многоэмиттерным транзистором.

Этот элемент специально разработан для применения в логических микросхемах и в качестве самостоятельного электронного компонента, реализованного в отдельном корпусе, не выпускается. Отсюда понятно, почему элемент ТТЛ — «транзисторно-транзисторный». Его основные свойства формируют только транзисторы, а остальные элементы применяются только как вспомогательные.

Путеводитель в мир электроники. Книга 2 - _264.jpg
Путеводитель в мир электроники. Книга 2 - _265.jpg
Путеводитель в мир электроники. Книга 2 - _266.jpg

Рис. 14.6. Схемотехника логических элементов разных серий:

а — РТЛ; б — ДТЛ; в — ТТЛ

У читателя наверняка появился законный вопрос: «Какой смысл иметь микросхемы, разработанные и производимые по разным технологиям, ведь все они работают одинаково?». Верно, исторически появившийся первым элемент РТЛ выполняет ту же функцию, что и «продвинутый» ТТЛШ! Реально — и об этом уже было сказано — элементы, изготовленные по разным технологиям, обладают разным быстродействием, отличаются по потреблению энергии. Быстродействие элемента определяется временем, за которое он переключается из одного логического состояния в другое. Чем быстрее смогут переключаться логические элементы, тем быстрее цифровая схема сможет совершать операции, производить вычисления. Обратите внимание на стремительно растущую частоту работы компьютерных микропроцессоров Intel — борьба идет за повышение максимально возможного числа переключений в секунду.

Второй немаловажный параметр логических элементов — потребляемая энергия (потребляемая мощность, потребляемый ток). Обычно интереснее сравнивать потребляемый микросхемами ток, так как напряжение питания у них может быть разным. На заре развития цифровой техники, когда вычислительные машины создавались на основе логических элементов, спроектированных с применением электронных ламп, для их питания требовались сравнительно большие мощности в сотни киловатт. Например, машина ENIAC в час потребляла 150 кВт. Потребляемая мощность современных домашних компьютеров оценивается по типовому блоку питания, встроенному в него. Мощность блока питания обычно не превышает 200–300 Вт, а возможности современных компьютеров в миллионы раз шире, чем тех, первых, на электронных лампах.

Особенно важно потребление энергии в портативной аппаратуре с батарейным питанием. Чем меньше потребляет прибор энергии, тем дольше прослужит питающий его комплект батарей. Наиболее показательный пример — надежная работа наручных электронных часов, которые могут годами «ходить», не требуя смены крохотных «батареек», хотя внутри электронной схемы работает не одна сотня транзисторов. Другой пример — переносные ноутбуки, которые можно взять с собой в поездку и которые практически ненамного уступают по возможностям настольным компьютерам.

На сегодняшний момент ТТЛ технология подошла к границе своих возможностей по быстродействию и потреблению энергии. У профессиональных разработчиков цифровой техники она уже не считается «технологией с большим будущим». На что обращено внимание профессионалов? Ситуация без перспектив, как правило, является тупиковой. Должен же быть какой-то выход?

Выход есть. Рассматривая технологию ТТЛ, основанную на использовании биполярных транзисторов, мы совершенно забыли о том, что есть еще и полевые приборы, на управление которыми практически не нужно затрачивать энергию… Мы рассмотрим перспективные серии микросхем с пониженным энергопотреблением в следующем разделе, а в этом настало время обозначить серии ТТЛ, рекомендуемые для радиолюбительского творчества.

Сравнительная табл. 14.4, показывающая динамические параметры (быстродействие) и потребляемую мощность разных микросхем в расчете на перенос одного бита, отражает усредненные параметры. Следует помнить, что параметры конкретных микросхем могут несколько отличаться от указанных средних, но общая тенденция сохраняется.

Путеводитель в мир электроники. Книга 2 - _267.jpg

Для большинства радиолюбительских разработок рекомендуется использовать ТТЛ и ТТЛШ серии К555 и КР1533. Серии К155 и 133 на сегодняшний день считаются устаревшими, неперспективными, поэтому по возможности их лучше исключить из арсенала и использовать в своих практических конструкциях только в крайних случаях, когда под рукой не окажется нужной микросхемы из серий К555 и КР1533. В составе этих серий есть полные аналоги всех микросхем устаревших серий, так что таким обстоятельством нужно активно пользоваться. Напряжение питания всех рекомендуемых ТТЛ микросхем — +5 В с допуском не более ±5 %.