Шаг за шагом. Транзисторы - Сворень Рудольф Анатольевич. Страница 24

Но, конечно же, эти рассуждения ошибочны. Прежде всего они не учитывают неумолимый закон Ома. Включив в эмиттерную цепь свою нагрузку Rн = 10 ком, мы примерно в тысячу раз уменьшим ток в этой цепи, так как сопротивление нагрузки в тысячу раз больше прямого сопротивления эмиттерного pn-перехода. Безболезненно (или почти безболезненно) большое сопротивление нагрузки можно включать лишь в коллекторную цепь: ее собственное сопротивление достаточно велико и на этом фоне включение нагрузки не очень-то заметно.

Как видите, наша попытка усилить сигнал без управляющего прибора, в данном случае без транзистора, кончилась крахом. Да иначе и быть не могло. Никакой сигнал не может отдать больше мощности, чем у него есть, и единственная возможность усилить слабый сигнал — это слепить его мощную копию из энергии, которую дает другой источник.

На рис. 39 коллекторный pn-переход показан в виде переменного сопротивления Rвых. При этом, конечно, не отражены все теперь уже хорошо известные нам процессы — впрыскивание зарядов из эмиттера в базу, диффузия, ускорение зарядов в коллекторном переходе, — в результате которых слабый сигнал управляет мощным потоком энергии. Забыв обо всех подробностях, можно представить себе, как этот слабый сигнал, действующий в цепи входного сопротивления Rвх, каким-то образом двигает ручку переменного сопротивления Rвых, меняет ток коллекторной цепи, а вместе с ним и напряжение на нагрузке.

Шаг за шагом. Транзисторы - _66.jpg

Рис. 39. Транзистор, по сути дела, представляет собой реостат, сопротивление которого (сопротивление коллекторной цепи) меняется под действием усиливаемого сигнала.

Можно найти немало аналогий, помогающих понять, как работает транзистор. Можно, например, представить себе, как охотник-индеец стреляет из лука, а товарищ помогает ему, подает стрелы. Этот помощник делает примерно то же, что источник сигнала, подключенный к эмиттерному переходу: он подает заряды-стрелы для стрельбы в цель-нагрузку. Как бы ни старался помощник, он не сможет запустить стрелу с такой силой, как это делает сильно натянутая тетива лука. Лук здесь играет примерно ту же роль, что и коллекторная батарея в усилителе.

А вот еще одна, уже знакомая нам аналогия (стр. 22): затрачивая сравнительно небольшие усилия, вы подталкиваете к краю высокой горы каменные глыбы, а затем сталкиваете их вниз. Разогнавшись при падении с большой высоты, камни совершают значительную механическую работу, подобно тому как заряды, ускоренные коллекторной батареей, работают на сопротивлении нагрузки.

Для того чтобы эта аналогия была больше похожа на усилительный каскад с транзистором, нужно добавить подъемник, который бы возвращал сброшенные камни на вершину горы: ведь коллекторная батарея возвращает поработавшие на нагрузке заряды обратно в эмиттерную цепь усилителя, точнее — к «плюсу» батареи смещения. Кроме того, камни нужно подталкивать к обрыву в соответствии с каким-либо условным кодом. Например, в соответствии с азбукой Морзе (три камня, сброшенных подряд, — «тире», одиночный камень — «точка»). При этом поток камней, летящих с вершины вниз, как и полагается мощной копии, будет повторять все наши условные сигналы. Подумав, вы наверняка найдете немало других подобных аналогий.

Работу усилительного каскада может иллюстрировать система резервуаров, насосов и соединительных труб (рис. 40).

Шаг за шагом. Транзисторы - _67.jpg

Рис. 40. Транзисторный усилитель напоминает гидравлическую систему, где, легко перемещая заслонку, можно управлять мощным потоком воды.

Возле каждого элемента этого гидравлического усилителя написано, чью роль он исполняет, какому элементу транзисторного усилителя соответствует. Наибольшую работу в этой стеме выполняет насос, исполняющий роль коллекторной батареи Бк. Он-то и создает большой перепад уровней между резервуарами «база» и «коллектор», и вода, падая с большой высоты, вращает мощную турбину-«нагрузку». Во входной цепи гидравлической системы имеется еще два насоса — «смещение» и «сигнал». Главная задача этих насосов — регулировать поток жидкости из «эмиттера» в «базу». Для регулирования используется поршень с заслонкой, которая делает примерно то же самое, что и напряжение, приложенное к эмиттерному pn-переходу. Насос «смещение» создает постоянное давление, а насос «сигнал» — переменное. Поэтому в гидравлической системе интенсивность потока воды меняется так же, как под действием усиливаемого электрического сигнала меняется ток во всех цепях транзистора. Изменение интенсивности потока воды приводит к тому, что меняется и скорость вращения мощной турбины-нагрузки. Турбина при этом работает неравномерно, мощность ее меняется, и таким образом создается своеобразный механический сигнал, некоторое подобие выходного сигнала в транзисторном усилителе. Механический сигнал, созданный турбиной, намного мощнее механического сигнала, полученного от насоса «сигнал». И именно в этом заключается эффект усиления.

Мы с вами затратили немало времени на то, чтобы выяснить, как устроены и как работают полупроводниковые приборы. Сейчас, пожалуй, уже можно считать, что цель достигнута, что суть дела более или менее ясна. Однако, несмотря на это, мы по собственной инициативе пойдем на еще одну трудную операцию. После нее эта самая «суть дела» наверняка станет для вас не просто более или менее ясной, а такой же бесспорной, такой же привычной, как, скажем, восход солнца или падение камня. Нашей новой операции можно смело присвоить шифр «Видел сам».

Человек так устроен, что он всегда немножко не верит даже самым убедительным словам, самым логичным рассуждениям. (Может быть, это защитная реакция, связанная с тем, что мы нередко ошибаемся, принимая безошибочные, казалось бы, решения, делая бесспорные на первый взгляд выводы?) Лучший способ борьбы с этим своим внутренним неверием, лучший способ определения истинной ценности слов, идей, рассуждений — это эксперимент, испытание на опыте, проверка делом. Вот почему следующие два раздела книги полностью посвящены делам: это своего рода руководство к практическим занятиям. Мы проделаем несколько простейших опытов и попытаемся практически доказать, что диод действительно выпрямляет, а транзистор усиливает.

Начнем с диода.

ОТ СЛОВ К ДЕЛУ

Есть несколько простейших опытов, доказывающих, что полупроводниковый диод обладает односторонней проводимостью и что все наши рассказы о «великолепных четверках» германия и кремния, об электронах и дырках, донорах и акцепторах, основных и неосновных носителях, о «маневрах» электрических зарядов на границе между пир зонами диода и о многих других чудесах, — что все это истинная правда.

Вот один из таких простейших опытов. Возьмите обычный абонентский громкоговоритель (громкоговоритель радиоточки) и, подключив его к батарейке карманного фонаря, попробуйте периодически разрывать цепь, проще говоря — попробуйте подергать один из соединительных проводов (рис. 41). Вы услышите в громкоговорителе щелчки. Батарейка дает постоянный ток, под действием которого громкоговоритель не создает звука, но в момент подключения батарейки к громкоговорителю или ее отключения ток в цепи меняется (от нуля или до нуля). Толчки тока заставляют диффузор колебаться и создавать звук.

Шаг за шагом. Транзисторы - _68.jpg

Рис. 41. Используя в качестве индикатора громкоговоритель или лампочку, можно на опыте убедиться в односторонней проводимости полупроводникового диода.