Ваш радиоприемник - Сворень Рудольф Анатольевич. Страница 31
Следующий вопрос, на котором мы остановимся, это включение триода в реальную усилительную схему. Здесь есть одна очень важная особенность, с нее мы и начнем.
Сколько будет 2 + 2? Подождите улыбаться, нам сейчас придется рассмотреть случай, когда результат равен… трем.
Для того чтобы подвести к усилителю входное напряжение, нужно иметь два входных зажима. Два зажима нужно для того, чтобы вывести или, как говорят, снять усиленное выходное напряжение. В итоге получается четыре. А у триода есть только три электрода (подогреватель считать нечего, мы уже об этом говорили). Вот и выходит, что нам нужно получить 2 + 2 = 3! И самое интересное, что сделать это можно, причем тремя разными способами: нужно так составить схему, чтобы один из электродов — катод, анод или сетка использовался бы дважды — и во входной и в выходной цепи (рис. 38, а, б, в). Из этих трех решении мы рассмотрим одно самое распространенное — схему с общим катодом (рис. 38, а).
Рис. 38
Перед тем как рисовать схему, еще одно замечание. Радиоэлектронную аппаратуру, как правило, монтируют на металлическом шасси (хотите убедиться — загляните внутрь приемника). Шасси — хороший проводник тока, и его всегда используют как одну из соединительных цепей. В приемниках, например, шасси выполняет роль проводника, соединенного с заземлением. Поэтому когда требуется какую-нибудь деталь заземлить, ее просто соединяют с шасси. Так поступают и с катодом. В этом случае все цепи, соединяющиеся с катодом, а таких цепей несколько, достаточно подключить к шасси. Совершенно ясно, что шасси сможет служить одним из проводов накала. Если лампа имеет катод прямого накала, то с шасси соединяют «плюс» накальной батареи и одновременно «сажают» на шасси один из выводов катода каждой лампы. Это позволит вести к катоду лишь один провод от накальной батареи, от ее «минуса».
Теперь нарисуем схему, она довольно проста (рис. 39, а).
Рис. 39
Источник входного сигнала (в нашем примере микрофон) одним концом, через конденсатор С1, подключается к сетке, другим — к катоду через шасси. Таким образом, усиливаемое напряжение, как это и должно быть, действует между сеткой и катодом.
«Минус» анодной батареи заземлен, то есть опять-таки подключен к катоду. «Плюс» попадает на анод через сопротивление нагрузки R2. Анодный ток замыкается по цепи: «плюс»— нагрузка анод — катод — шасси — «минус». Ну, а как снять усиленное напряжение с нагрузки? Для того чтобы упростить эту операцию, «плюс» анодной батареи заземляют через конденсатор С2. Этот конденсатор называют по-разному — иногда развязывающим или просто развязкой, иногда блокировочным, а иногда конденсатором фильтра. В дальнейшем мы будем пользоваться первым названием — оно лучше других отражает суть дела.
На постоянное напряжение и постоянную составляющую анодного тока конденсатор развязки не оказывает никакого влияния. Что же касается переменной составляющей, то теперь она с нагрузки замкнется прямо на шасси, то есть на катод. Таким образом, наш конденсатор как бы развязывает сложный узел, отводит переменную составляющую от анодной батареи, где этой составляющей, грубо говоря, нечего делать.
Благодаря включению развязки возникающее на нагрузке переменное (выходное) напряжение действует между анодом и заземленным катодом. Правда, если вы захотите отвести это напряжение или просто измерить его, то к аноду лампы нужно будет подключиться через конденсатор С3 — он предохранит вас от постоянного напряжения, которое всегда имеется на аноде. Этот конденсатор обычно называют разделительным или переходным.
Еще одна деталь, которую можно увидеть на схеме, сопротивление R1, включенное между сеткой и катодом. Оно называется сопротивлением утечки или просто утечкой и нужно для того, чтобы электроны, попавшие на сетку, могли как-нибудь вернуться на катод. Если утечки не будет, то электроны, случайно попавшие на сетку, будут накапливаться там и через некоторое время их общий отрицательный заряд на сетке создаст непреодолимое препятствие для электронов, которые летят к аноду. Анодный ток прекратится, и лампа, как принято говорить, окажется запертой.
Не нужно, однако, думать, что любой отрицательный заряд, то есть любое отрицательное напряжение на сетке (относительно катода), запирает лампу. Отсутствие утечки опасно тем, что на сетке образуется слишком большой «минус». Что же касается небольшого отрицательного напряжения, то оно оказывается даже полезным, так как ограничивает начальную величину анодного тока и резко уменьшает, практически совсем ликвидирует, никому не нужный сеточный ток (рис. 35, г). Такое отрицательное напряжение — его называют отрицательным смещением — почти всегда подают на сетку одновременно с усиливаемым сигналом. В нашей схеме источником смешения является отдельная батарея Бс. Конденсатор C1 предохраняет ее от замыкания на землю через цепь микрофона.
В приемниках такая схема почти никогда не применяется. В приемниках можно встретить три схемы подачи отрицательного смещения. В первой (рис. 39, б) оно образуется на небольшом сопротивлении R2, включенном между катодом и шасси. По этому сопротивлению проходит анодный ток Iа, и на нем возникает постоянное напряжение, которое и служит смещением. Поскольку ток течет с катода к шасси, то «плюс» этого смещения приложен к катоду, а «минус» через сопротивление утечки R1 к сетке. Для того чтобы беспрепятственно пропустить на шасси переменную составляющую анодного тока, в катодную цепь включают развязывающий конденсатор С1.
В другой схеме (рис. 39, в) источником смещения служит сама утечка R1. Дело в том, что небольшой сеточный ток и лампе есть всегда, и если взять очень большое 10–20 Мом, то на нем можно получить смещение порядка 1 в. С третьей, очень распространенной схемой подачи отрицательного смещения мы познакомимся позже (рис. 48).
Если вы разобрались, как работает простейший усилитель, выполненный на простейшей усилительной лампе — триоде, то у вас в руках ключ к пониманию работы всего приемника. Любой, даже самый сложный приемник — это прежде всего колебательные контуры, детектор, ламповые усилители, и теперь мы знакомы со всеми этими элементами.
Мы не случайно назвали триод простейшей усилительной лампой. Наряду с триодом существуют более сложные электронные лампы, и в основном именно они применяются в современных приемниках.
Лампы разные нужны, лампы всякие важны
Около двадцати лет тому назад был издан справочник, где приводились основные данные о всех электронных лампах, когда-либо выпущенных в мире. В этом справочнике было около 10 000 названий ламп. Почему так много? Ну, во-первых, лампы все время совершенствовались: современный триод, например, совсем не похож на первые трехэлектродные лампы, появившиеся на свет в 1907 году. В биографии лампы можно найти несколько периодов, когда вся она или отдельные ее детали претерпевали самые серьезные изменения.
Во-вторых, разные страны, а иногда и отдельные опасающиеся конкуренции фирмы выпускали свои собственные типы ламп, и сейчас в мире существуют десятки ламп, совершенно одинаковых по своим усилительным возможностям, но отличающихся устройством.
Наконец, третья причина — для разных радиоустройств нужны различные электронные лампы, работающие при разных анодных или накальных напряжениях, позволяющие получить большое усиление по току или большое усиление по напряжению, лампы, рассчитанные на различные виды анодной нагрузки и т. д. Так, например, среди современных отечественных ламп вы найдете около двух десятков триодов, каждый из которых имеет свои особенности. А ведь, кроме триодов, имеются другие типы усилительных ламп, и среди них существует такое же, если не большее, разнообразие. Сейчас мы попробуем разобраться в богатом ассортименте ламп, научимся отличать одну лампу от другой и в ряде случаев решать вопрос об их взаимной замене.