Шаг за шагом. Усилители и радиоузлы - Сворень Рудольф Анатольевич. Страница 5
Следующие два параметра звука, с которыми нам предстоит познакомиться, — это скорость распространения и длина волны.
Если вы взглянете на график звука и график колебаний струны (рис. 4), то сразу же заметите их различие — звуковые колебания несколько запаздывают. В нашем примере они в точности следуют за всеми колебаниями струны, но следуют с опозданием на 0,1 сек. Это время необходимо звуковой волне для того, чтобы добежать от струны до той точки, где мы измеряем давление. Если измерить расстояние между струной и нашим воображаемым манометром, то можно подсчитать скорость распространения звуковой волны. Скорость звука, измеренная таким способом в различных веществах, приведена в табл. 1. Можно решить и обратную задачу. Взяв из этой таблицы скорость звука в воздухе (330 м/сек) и вспомнив, что опоздание звука составляет 0,1 сек, мы легко определим расстояние между струной и манометром. Оно составляет 33 м. Подобным же образом, заметив, на сколько секунд запаздывает гром, легко подсчитать расстояние до места вспышки молнии.
Что такое длина звуковой волны, легко понять, если вспомнить наше старое сравнение — с морскими волнами. Там длиной волны называют расстояние между двумя ближайшими гребнями или двумя ближайшими впадинами. Аналогично для звука длина волны — это расстояние между двумя ближайшими участками с максимальным (амплитудным) давлением или максимальным разрежением воздуха.
Длина звуковой волны зависит от частоты и скорости распространения звука. Чем выше частота, тем чаще следуют друг за другом области сжатия и разрежения, тем, следовательно, короче волна. А с увеличением скорости звука длина волны, наоборот, увеличивается. Чем быстрее распространяется звук, тем дальше успевает уйти один гребень от другого, тем больше расстояние между ними.
Нужно сказать, что акустика имеет дело со сравнительно короткими волнами. Так, например, при частоте 100 гц длина звуковой волны 3,3 м; частоте 500 гц соответствует волна 66 см, а частоте 20 кгц — 1,7 см. Данные эти относятся только к воздуху, к скорости звука 330 м/сек. В другой среде, с иной скоростью распространения звука, и длина волны будет иной. Так, в воде звук распространяется намного быстрее, и за время одного периода гребень звукового давления успевает пройти в четыре раза большее расстояние, чем в воздухе. Поэтому расстояние между гребнями, то есть длина волны в воде, также в четыре раза больше. Для приведенных выше значений частоты мы получим примерно такие длины волн: 14 м, 280 см и около 7 см.
Для распространения звука в плотной среде, в частности в жидкости, важна еще одна особенность. Звуковые волны, особенно самые длинные, не встречают значительного сопротивления, хорошо сохраняют энергию, полученную от излучателя, и поэтому проходят весьма большие расстояния. Это позволяет пользоваться звуком для дальней подводной звуковой связи, пеленгации и локации. Гидролокатор, подобно нашей струне, посылает в подводное царство звуковые волны и внимательно «слушает», когда и откуда вернется эхо. Своеобразным гидролокатором является широко распространенный прибор — эхолот. Улавливая отраженный от дна звук, он определяет глубину водоема. Эхолот используют также для обнаружения косяков рыбы.
Другой прибор — гидроакустический пеленгатор — только «слушает». Он обнаруживает на большом расстоянии невидимый источник подводного звука — например, работающий корабельный двигатель. Существуют и подводные звуковые маяки, по сигналам которых капитаны могут вести свои корабли.
Вы можете и сами понаблюдать, насколько хорошо вода проводит звуковые волны. Когда будете нырять в реке или в море, прислушайтесь к подводным звукам. Вы услышите, как у берега волна играет камешками, услышите, как стучит двигатель проходящего вдали парохода.
Легко убедиться и в том, что звук хорошо распространяется в твердых телах. Приложив ухо к железнодорожному рельсу, можно услышать шум приближающегося поезда задолго до его появления, когда звуки, идущие по воздуху, еще совсем не слышны. Подобным образом интересно послушать и водопроводную трубу — она может «донести» до вас много далеких шумов.
В технике широко используют специальные приборы — акустические дефектоскопы, которые следят за тем, как проходит звук по твердому телу. С их помощью удается обнаружить невидимый дефект в ответственной детали, например раковину в стальном вале электрогенератора или трещину в бетонном фундаменте будущего дома.
Можно рассказать много интересного о свойствах звуковых волн, о том, как акустика помогает самым различным областям науки и техники, о новых акустических приборах. Однако пора возвращаться к своей главной задаче — к знакомству с характеристиками звуковых колебаний. Сейчас предстоит познакомиться с еще одной характеристикой, еще одним и, кстати говоря, исключительно важным понятием. Имя ему — спектр.
Для начала поясним, почему мы назвали спектр «исключительно важным» понятием. Представьте себе, что несколько музыкантов, например, пианист, скрипач, баянист и трубач, взяли на своих инструментах одну и ту же ноту. Забегая немного вперед, скажем, что при этом все четыре инструмента создают звуковые волны с одним и тем же периодом. Можно рассадить музыкантов так, что в определенной точке все четыре звуковые волны будут создавать и одинаковое давление. Но никаким способом не удастся добиться, чтобы звуки, идущие от разных инструментов, были неотличимо похожи друг на друга. Вы прекрасно знаете, что скрипка и труба всегда звучат по-разному даже тогда, когда берут одну и ту же ноту.
Чем же отличаются, казалось бы, одинаковые звуки, исходящие из разных инструментов? Они отличаются пока еще загадочным для нас спектром.
Очень часто учебная модель какого-либо прибора или аппарата устроена намного проще оригинала. Делают это для того, чтобы сразу не запугивать ученика и сложность реальной техники раскрывать перед ним постепенно. Исходя из подобных побуждений, и мы выбрали для первого знакомства чрезвычайно упрощенный образец звуковых колебаний (рис. 1 и 4). В основном, было сделано два упрощения, два отклонения от истины, и, пожалуй, сейчас можно честно рассказать о каждом из них.
На рис. 5 приведено несколько графиков реальных звуков. Во многом все они похожи: имеют одинаковый период колебаний, одинаковую амплитуду. В то же время сразу видно, что все эти звуки сильно отличаются один от другого и от «учебного» (рис. 1 и 4). Они отличаются формой кривой. А за этими, казалось бы, сухими словами «форма кривой» скрывается очень многое — весь ход изменения звукового давления. Вы видите, что в одном случае (рис. 5, а) звуковое давление изменяется очень неуверенно — в течение каждого полупериода оно несколько раз становится то больше, то меньше. Второй график (рис. 5, б) показывает, что сжатие и разрежение существует лишь небольшую часть периода, а все остальное время звуковое давление близко к нулю. Совсем иначе проходят колебания в третьем случае (рис. 5, в). Здесь звуковое давление почти весь период действует с наибольшей амплитудной силой.
Рис. 5. Одинаковые по высоте (частоте) звуки, исполненные на различных музыкальных инструментах, звучат по-разному. Характер звучания определяется формой кривой (спектром).
Кроме уже знакомой струны, существует огромное множество источников звука, которые создают самые разнообразные звуковые колебания с самой причудливой формой кривой.
Наше ухо, а мы его назвали главным потребителем звуковых волн, довольно точно различает все эти звуки. Иными словами, ухо каким-то образом оценивает не только силу, не только частоту звука, но и форму кривой его графика.
Из всего сказанного придется сделать невеселый вывод. Путешествуя по зоопарку, мы не заметили слона; изучая звуковые колебания, не ввели очень важный для них параметр — форму кривой. Но как только захотим исправить эту ошибку, то сразу же столкнемся с серьезными, на первый взгляд даже непреодолимыми трудностями. Как можно точно оценить форму графика? В каких единицах ее измерять? Как сравнивать разные по форме кривые, отмечать их сходство или различие?