Шаг за шагом. От детекторного приемника до супергетеродина - Сворень Рудольф Анатольевич. Страница 12

Ухо человека способно слышать звуковые колебания с частотами от 20 гц до 20 000 гц (20 кгц). Звуки с частотой более 20 кгц (ультразвук) и менее 20 гц (инфразвук) мы не слышим (лист 47). Указанные границы, конечно, не являются строгими — для каждого человека они могут отклоняться в ту или иную сторону.

Обычно мы не всегда полностью используем возможности нашего слуха. Так, например, музыкальные инструменты, входящие в симфонический оркестр, в основном создают звуковые колебания с частотами от 25 гц до 13 кгц, и поэтому, слушая оркестр, нам не обязательно воспринимать звуки с более высокими частотами, хотя они и создают определенную «окраску» звучания оркестра.

Если же несколько снизить требования к естественности звучания, то при слушании музыкальных произведений можно ограничиться максимальной частотой 10, иногда даже 5 кгц и минимальной частотой 50—100 гц. Для того же: чтобы удовлетворительно воспринимать разговорную речь, достаточно слышать звуковые колебания с частотами от 300 до 3400 гц. Речь будет оставаться разборчивой даже в том случае, если будут воспроизводиться звуки с частотами всего лишь до 1500 гц.

Все эти данные получены в результате опытов, при которых качество звучания оценивалось большим числом людей. Полученные результаты учитывают при разработке звуковоспроизводящей аппаратуры. Так, например, радиоприемники высшего класса воспроизводят звуки с максимальной частотой 10–12 кгц, в более дешевых приемниках ограничиваются максимальной частотой 5–6 кгц. Это хотя несколько ухудшает качество звучания, но зато позволяет упростить приемник, а значит, и снизить его стоимость. Для аппаратуры телефонной связи верхняя граница воспроизводимых частот всего 2–2,5 кгц.

Человеческое ухо — замечательный прибор. Оно ощущает самые незначительные изменения частоты звука: достаточно частоте измениться всего на несколько десятых долей процента, как ухо тотчас же это услышит. Ухо отличается очень высокой чувствительностью к слабым звукам: оно слышит даже такие слабые звуки, которые оказывают на поверхность барабанной перепонки давление с силой 0,0000003 грамма. Под действием этих звуков сама барабанная перепонка колеблется с «размахом» не более одной десятимиллионной доли миллиметра!

И все же, несмотря на столь высокую чувствительность нашего слухового аппарата, мы можем разговаривать с собеседником, находясь лишь на сравнительно близком расстоянии от него. Можно крикнуть так, чтобы вас услышали на противоположной стороне улицы, но как бы громко вы ни кричали в Москве, вас все равно не услышат в Ленинграде. Это в первую очередь связано с тем, что звуковые волны по мере своего продвижения вперед очень быстро ослабевают.

ЭЛЕКТРИЧЕСКИЙ ГОНЕЦ

Вы разговариваете по телефону, и на другом конце линии далекий собеседник слышит ваш голос. Каким же образом человеческая- речь, которая обычно не слышна дальше чем на несколько десятков метров, проходит по телефонной линии сотни и тысячи километров? Неужели небольшой телефонный аппарат передаст возникающие при разговоре колебания воздуха на такие огромные расстояния? Конечно, нет! Звуковые колебания практически не выходят за пределы комнаты, где вы говорите, а для передачи разговора используется электрический ток, который проходит по проводам, соединяющим телефонные аппараты.

В трубке нашего аппарата имеется угольный микрофон — небольшая коробочка с угольным порошком и крышкой в виде тонкой угольной пластинки (лист 44). Микрофон вместе с батареей включен в телефонную цепь таким образом, что через угольный порошок все время проходит ток. При разговоре под действием звуковых волн меняется давление воздуха на порошок, а следовательно, и плотность порошка. При этом меняется и электрическое сопротивление микрофона: плотно сжатые крупинки угольного порошка намного легче пропускают электрический ток, чем тогда, когда они находятся в разрыхленном состоянии. Изменение сопротивления микрофона, в свою очередь, приводит к соответствующему изменению тока (в полном соответствии с законом Ома!), и поэтому при разговоре ток в цепи микрофона изменяется, в точности повторяя все изменения звукового давления.

На другом конце цепи включена намотанная тонким проводом катушка телефона (слово «телефон» имеет два значения; здесь под телефоном понимается прибор для воспроизведения звука, часто называемый наушником), к которой прилегает мембрана — тонкая стальная пластинка (лист 45). Под действием тока, проходящего по катушке (вы еще не забыли, что проводник с током — это тот же магнит?), мембрана телефона намагничивается и притягивается к ней. А так как при разговоре ток в цепи меняется, то меняется и сила притяжения мембраны.

Вследствие этого мембрана колеблется и создает звуковые колебания, почти в точности соответствующие звуку, произнесенному перед микрофоном.

Таким образом, при телефонном разговоре происходят два основных преобразования: на передающей стороне с помощью микрофона звуковые колебания преобразуются в электрические, а на приемной стороне электрические колебания преобразуются в звуковые. Между микрофоном и телефоном циркулирует только электрический ток (рис. 24).

Шаг за шагом. От детекторного приемника до супергетеродина - _47.jpg

Рис. 24. При разговоре меняется звуковое давление на угольный порошок микрофона, меняется его сопротивление, а значит, и ток в цепи. Это, в свою очередь, приводит к тому, что меняется сила притяжения мембраны к катушке (электромагниту) телефона, мембрана начинает колебаться и создает звуковые волны.

Целесообразность этих преобразований очевидна: электрический сигнал — это надежный, быстрый и неутомимый гонец: он проходит огромные расстояния с молниеносной быстротой, почти в миллион раз быстрее звука.

Но как быть, если нужно установить связь без проводов, например с самолетом, с кораблем, бороздящим моря у берегов Антарктики, или получить сообщение с борта космической ракеты?

Здесь-то и проявляются замечательные преимущества линий радиосвязи, на которых передача электрических сигналов осуществляется без проводов, с помощью электромагнитных волн, распространяющихся в пространстве со скоростью света.

НЕСКОЛЬКО СЛОВ О САМОМ СЛОЖНОМ

Наиболее сложные понятия, с которыми приходится сталкиваться при изучении электротехники и радиотехники, — это понятия об электрическом, магнитном и электромагнитном пале. И дело здесь, пожалуй, не в том, что электрическое или магнитное поля нельзя увидеть или потрогать рукой. Ведь мы довольно четко, хотя и упрощенно, представляем себе атом, несмотря на то что посмотреть на него не можем.

Основная трудность состоит в том, что невозможно представить себе какую-нибудь модель поля подобно тому, как мы рисуем в своем воображении упрощенную модель атома.

Понятие об электрическом, магнитном и электромагнитном полях лучше всего, взять из простейших опытов. Затем можно будет дополнить и развивать эти понятия, используя огромные достижения математики и физики в области изучения полей.

Электрическое поле возникает вокруг всякого электрического заряда или вокруг предмета, на котором имеется избыток зарядов какого-нибудь одного знака. Мы потерли о шерсть пластмассовую палочку или обычную гребенку, создав на ней избыток отрицательных зарядов, и пространство вокруг гребенки приобрело какие-то особые свойства: мелкие клочки бумаги, попадая в это пространство, начинают притягиваться к ней. Каким образом наэлектризованная гребенка действует на клочки бумаги? Может быть, действие электрических сил передается через частицы окружающего воздуха?

Ни в коем случае! Если мы проделаем свой опыт в пустоте, то клочки бумаги будут так же притягиваться к гребенке, как и в воздухе или в каком-либо другом газе (рис. 25).