Шаг за шагом. От детекторного приемника до супергетеродина - Сворень Рудольф Анатольевич. Страница 70
Прежде чем разбирать эту систему, скажем, зачем она нужна.
Основная «работа» системы АРУ заключается в том, что она снижает усиление приемника, по мере того как возрастает напряжение сигнала на выходе (стр. 274). Тогда, когда на входе появляется сильный сигнал, система АРУ, резко снизив усиление, предохраняет усилитель низкой частоты от перегрузки, а радиослушателей — от оглушительного по громкости звука.
Но спрашивается, нужно ли снижать усиление приемника, когда уровень входного сигнала возрастает, но все еще остается очень слабым? Конечно, нет, и вы можете сами убедиться в этом на простом примере.
Предположим, что на входе приемника действует сигнал с напряжением 10 мкв. Это очень слабый сигнал, и создаваемый им в громкоговорителе звук будет очень тихим. Теперь предположим, что мы нашли другую станцию, которая создаст на входе приемника сигнал в 20 мкв; это, конечно, тоже очень слабый сигнал, но все же в два раза сильнее первого, и, очевидно, напряжение, которое теперь будет подводиться к громкоговорителю, также возрастет в два раза. Но, к сожалению, как только возрастет уровень сигнала на входе, вступит в действие система ЛРУ. Она уменьшит усиление приемника, и напряжение низкой частоты на выходе детектора возрастет уже не в два, а примерно в полтора раза. Таким образом, действующая «без разбора» система АРУ, которая очень нужна в случае сильного сигнала, приносит лишь вред при приеме слабых сигналов. Можно ли устранить этот недостаток? Очевидно, можно, если автоматически выключать АРУ тогда, когда напряжение входного сигнала мало. Такое выключение и осуществляется в системе АРУ с задержкой.
Представьте себе, что на детектор вместе с высокочастотным напряжением подается и постоянное, причем «минусом» на анод (или, что то же самое, «плюсом» на катод). Совершенно ясно, что отрицательное напряжение на аноде «запрет» диод и тока в нем не будет. А как теперь будет влиять на работу диода подводимое к нему напряжение высокочастотного сигнала? Очевидно, что во время отрицательных полупериодов высокочастотного сигнала запирающее напряжение на аноде диода будет возрастать, а во время положительных полупериодов — уменьшаться. Так, например, если на аноде действует постоянной отрицательное напряжение (напряжение «задержки») —1 в и переменное напряжение с амплитудой 0,5 в, то результирующее напряжение на аноде будет меняться от — 1,5 в (—1 в — 0,5 в = —1,5 в) до — 0,5 в (—1 в + 0,5 в = —0,5 в). При амплитуде сигнала 1 в напряжение на аноде будет меняться от —2 в до 0. Когда же амплитуда сигнала превысит напряжение «задержки» (—1 в), то на аноде моментами будет действовать положительное напряжение и в цепи диода будут появляться импульсы тока (лист 181). Так, например, если амплитуда переменного напряжения равна 2 в, то во время отрицательного полупериода напряжение на аноде будет достигать —3 в (—1 в —2 в = —3 в), а во время положительных полупериодов на аноде будет появляться положительное напряжение + 1 в (—1 + 2 в = + 1 в).
Из всего сказанного следует, что диод, на анод которого подано отрицательное напряжение задержки, начнет детектировать лишь после того, как напряжение сигнала превысит напряжение задержки. Иными словами, при слабых сигналах, которые не создадут на аноде лампы достаточного напряжения, детектор не будет работать. А поскольку в системе АРУ регулирующее напряжение (отрицательное смещение на сетки усилительных ламп) появляется только тогда, когда в цепи диода, а значит, и по сопротивлению нагрузки этого диода пойдет ток, то можно считать, что, подав на анод диода отрицательное напряжение задержки, мы выключаем систему АРУ при приеме слабых сигналов.
В рассмотренной нами упрощенной схеме все получается очень хорошо, кроме одного: приемник с таким детектором… вообще не будет принимать слабых сигналов. Действительно, подав отрицательное напряжение на анод диода, мы не только выключим систему АРУ, но также выключим и детектор. Как говорит пословица, вместе с водой мы выплеснули из лохани и ребенка. Где же выход? А выход есть только один — нужно применить два диода. Один из них будет работать с «задержкой» и создавать регулирующее напряжение АРУ, другой диод будет использоваться для детектирования, и никакого постоянного напряжения мы на него подавать не будем (лист 182).
В схеме нашего приемника используется комбинированная лампа 6Г7 — двойной диод-триод. На триодной части этой лампы собран первый каскад усилителя НЧ, левый (по схеме) диод используется только для детектирования сигнала (детектор), правый — для получения регулирующего напряжения АРУ (выпрямитель АРУ).
Сигнал промежуточной частоты на детектор подается, как обычно, с контура L16С24 и с этого же контура через конденсатор С37 поступает на анод выпрямителя АРУ. В катодную цепь лампы включено сопротивление R15, благодаря которому на самом катоде появляется постоянное положительное напряжение около 1 в относительно шасси.
К шасси через сопротивление утечки R12 подключена управляющая сетка лампы и через сопротивление нагрузки R22 анод правого диода. Это значит, что на аноде правого диода, так же как и на сетке, будет действовать отрицательное напряжение относительно катода (напряжение «задержки» и напряжение «смещения»). Нагрузка детектора R11 подключается не к шасси, а непосредственно к катоду лампы, и поэтому между катодом и анодом левого диода (диод детектора) никакого постоянного напряжения не будет. Кроме рассмотренной схемы, существует еще ряд других способов подачи напряжения задержки на выпрямитель АРУ.
Вот мы и разобрали все схемные особенности первых двух приемников. Рассмотрим теперь схему супергетеродина, изображенную на чертеже 23. Этот приемник собран на батарейных лампах и предназначен для неэлектрифицированных сельских местностей. Приемник можно выполнить также в виде небольшого чемоданчика и использовать в туристских походах.
Приемник собран на четырех широко распространенных лампах: 1А2П, 1К2П, 1Б2П и 2П2П. Можно также применить аналогичные лампы 1А1П, 1К1П, 1Б1П, 2П1П, которые имеют такую же цоколевку и отличаются лишь несколько лучшими параметрами, но зато и повышенным потреблением тока.
Накальные цепи всех перечисленных ламп рассчитаны на питание постоянным током (катоды прямого накала, см. стр. 156) при напряжении 1,2 в. Особо следует отметить лампу 2П2П (2П1П): у нее имеются две соединенные последовательно нити накала, к которым можно подводить напряжение 2,4 в (отсюда и первая цифра в названии лампы). Если же соединить эти нити параллельно, то на лампу нужно подавать напряжение накала 1,2 в. Именно так и сделано в нашем приемнике, и поэтому все его лампы питаются от общей накальной батареи Бн. В качестве батареи Бн можно применить одну банку щелочного аккумулятора или любой гальванический элемент, желательно, конечно, большой емкости, например 1,5 НМЦГ-30 (ЗС). Можно также взять широко распространенный круглый элемент типа «Сатурн» (от карманного фонаря).
Следует заметить, что свежие гальванические элементы развивают э.д.с. 1, 4…1,6 в, а батарейные лампы даже при небольшом перекале (питание повышенным напряжением) быстро теряют эмиссию и выходят из строя. Однако, несмотря на это, гальванический элемент можно смело подключать к приемнику: при подключении нагрузки — накальных цепей ламп — часть напряжения потеряется на внутреннем сопротивлении гальванического элемента и напряжение, подводимое к нитям накала, не превысит 1,1–1,3 в.
В качестве источника анодного напряжения можно применить анодную батарею с напряжением 60–90 в от любого промышленного батарейного приемника.
Преобразовательный каскад приемника выполнен на лампе 1А2П (1А1П), которая по своему устройству очень напоминает лампу 6А7. Во входной цепи для упрощения коммутации используется емкостная связь с антенной. Гетеродин выполнен по обычной схеме с включением катушек обратной связи в цепь экранной сетки, которая играет роль анода гетеродина (лист 178). Усилитель ПЧ собран на лампе 1К2П (1К1П), а усилитель НЧ на лампах 1Б2П и 2П2П (1Б1П, 2П1П). На диодной части лампы 1Б2П собран детектор и выпрямитель АРУ (разумеется, без задержки).