Краткая история биологии - Азимов Айзек. Страница 35

Возник вопрос, являются ли вирусы живыми организмами. В 1935 г. американский биохимик Уэнделл Мередит Стенли (род. в 1904 г.), работая с экстрактом вируса табачной мозаики, получил игольчатые кристаллы. Оказалось, что эти кристаллы обладают высокой инфекционностью. Другими словами, ученый получил вирус в кристаллическом виде, а живые кристаллы — явление трудно объяснимое.

С другой стороны, нельзя ли допустить, что клеточная теория неточна и что клетки не являются неделимыми единицами жизни? Вирус много мельче клетки и в противоположность ей ни при каких условиях не способен существовать независимо. Однако вирусу удается проникнуть в клетку, размножиться там и в некоторых основных проявлениях вести себя, как живое существо.

Нет ли каких-либо внутриклеточных образований, каких-либо доклеточных элементов, которые были бы действительной основой жизни — структурой, управляющей остальной частью клетки? Не является ли вирус таким клеточным компонентом, когда-то и как-то отщепившимся от клетки, но готовым заселить ее и сделать чуждой истинному «хозяину»?

Если это так, такие доклеточые компоненты должны были бы находиться и в нормальных клетках. Кандидатами на эту роль, вероятнее всего, следует считать хромосомы. В первые годы нашего столетия стало очевидным, что хромосомы несут в себе факторы, управляющие наследованием физических свойств. Это определяет их руководящее положение в клетке, как и можно было ожидать от ключевых доклеточных компонентов. Однако хромосома значительно крупнее вируса.

Но число хромосом гораздо меньше количества наследуемых признаков. Отсюда можно было сделать вывод, что одна хромосома состоит из многих, возможно тысяч, частиц, каждая из которых управляет отдельным признаком. Эти отдельные частицы датский ботаник Вильгельм Людвиг Иогансен (1857–1927) в 1909 г. назвал генами (в переводе с греческого — дать жизнь чему-либо).

Однако в первое десятилетие XX в. отдельного гена, как и отдельных вирусов, еще не удавалось увидеть, хотя его проявления довольно успешно наблюдались. Ключ к этим исследованиям подобрал американский генетик Томас Хант Морган (1866–1945), использовав в 1910 г. новый биологический объект — плодовую мушку дрозофилу. Это маленькое насекомое неприхотливо, довольно легко размножается; кроме того, наличие в клетках дрозофилы всего четырех пар хромосом облегчает исследования.

Изучая эту мушку поколение за поколением, Морган обнаружил огромное количество мутаций. Ему удалось показать, что различные признаки связаны, то есть наследуются как один комплекс. Значит, гены, управляющие этими признаками, должны находиться на одной хромосоме, которая и наследуется как целое. Но сцепленные друг с другом признаки связаны не на век. Бывает, что один из признаков наследуется без связи с другим. Это происходит потому, что пары хромосом случайно обмениваются участками (кроссинговер), так что целостность отдельной хромосомы не абсолютна.

Подобные опыты позволили определить место каждого конкретного гена на хромосоме. Чем больше расстояние между двумя генами, тем больше вероятность перекрещивания произвольно расположенных генов. Изучая частоту, с которой расщепляются два особым образом связанных признака, можно определить относительное положение генов. В 1911 г. была составлена первая карта расположения генов в хромосомах (для дрозофилы). Один из учеников Моргана, американский генетик Герман Иозеф Мёллер (1890–1967), предложил метод увеличения частоты мутаций (1919). Он обнаружил, что повышение температуры увеличивает частоту мутаций. Это не было результатом общего «перемешивания» генов. Всегда оказывалось, что поражался один ген, тогда как его дубль на другой хромосоме данной пары оставался нетронутым Мёллер пришел к выводу, что эти изменения происходят на молекулярном уровне. Следующим шагом в его исследованиях было применение рентгеновских лучей, обладавших более высокой энергией, чем легкое нагревание. Отдельный рентгеновский луч, попав в хромосому, действует на нее в определенной точке. И действительно, в 1927 г. Мёллеру удалось доказать, что рентгеновские лучи значительно повышают темп мутирования. Эти исследования продолжил американский ботаник Альберт Фрэнсис Блэксли (род. в 1874 г.). В 1937 г. он показал, что темп мутаций можно повысить, действуя специфическими веществами (мутагенными факторами). Лучшим мутагенным фактором оказался колхицин — алкалоид, выделенный из безвременника (семейство ирисовых).

Таким образом, к середине 30-х годов и вирусы и гены утратили покров таинственности. И те и другие оказались молекулами примерно одной и той же величины и близкой химической природы. А нельзя ли гены считать «прирученными» клеточными вирусами? И может ли вирус быть «диким геном»?

Роль ДНК

Как только получили кристаллическую форму вирусов, стало возможным вести исследования по методу дифракции рентгеновских лучей. Вирусы, безусловно, относились к белкам, будучи особой их разновидностью, носящей название нуклеопротеидов. Успехи техники окрашивания препаратов позволили выяснить химическую природу отдельных субклеточных структур. Было установлено, что хромосомы (а следовательно, гены) также относятся к нуклеопротеидам. Молекула нуклеопротеида состоит из молекулы белка, связанной с фосфорсодержащим веществом, известным под названием нуклеиновой кислоты. Впервые нуклеиновые кислоты открыл в 1868 г. швейцарский биохимик Фридрих Мишер (1844–1895) в ядрах клеток гноя. Долгое время их считали специфически ядерным компонентом. Когда оказалось, что нуклеиновые кислоты присутствуют и вне ядер, уже поздно было менять название. Нуклеиновые кислоты подробно изучил немецкий биохимик Альбрехт Коссель (1853–1927), которому в 1880 г. удалось расщепить их на более мелкие составные части, включавшие фосфорную кислоту и сахар, точного состава которых он не смог определить. Кроме того, в нуклеиновой кислоте он обнаружил два соединения класса пуринов, молекулы которых представляли циклические соединения с двумя кольцами, содержащими четыре атома азота. Эти вещества Коссель назвал аденином и гуанином (а иногда просто обозначал буквами А и Г). Он обнаружил также три пиримидина (вещества с одним кольцом, содержащие два атома азота), которые были названы им цитозином, тимином и урацилом (Ц, Т и У). Американский химик Фебус Арон Теодор Левин (1869–1940), изучая эти вещества на протяжении 20-х и 30-х годов, показал, что в молекуле нуклеиновой кислоты молекула фосфорной кислоты, молекула сахара и молекула одного из пуринов или пиримидинов образуют трехкомпонентное соединение, которое он назвал нуклеотидом. Молекула нуклеиновой кислоты состоит из цепочки этих нуклеотидов, подобно тому как молекула белка — из цепей аминокислот. Нуклеотидная цепь построена так, что молекула фосфорной кислоты одного нуклеотида связана с сахарной группировкой соседнего нуклеотида. Это и есть сахаро-фосфатный скелет, от которого ответвляются отдельные пурины и пиримидины.

Далее Левин показал, что сахара нуклеиновых кислот могут быть двух типов: рибоза, содержащая только пять атомов углерода вместо шести, как это имеет место в хорошо изученных сахарах, и дезоксирибоза, в которой на один атом кислорода меньше, чем в рибозе. Каждая молекула нуклеиновой кислоты содержит тот или иной сахар, но отнюдь не оба одновременно. Таким образом, различаются два типа нуклеиновых кислот: рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК). Каждая нуклеиновая кислота включает пурины и пиримидины четырех различных типов. В ДНК нет урацила, в ее состав входят А, Г, Ц и Т, в то время как в РНК нет тимина, а только А, Г, Ц и У. Шотландский химик Александр Тодд (род. в 1907 г.) подтвердил данные Левина, синтезировав в 40-х годах различные нуклеотиды.

Вначале биохимики не придали большого значения нуклеиновым кислотам. Хотя и было известно, что белковая молекула связана с различными небелковыми дополнениями, вроде сахаров, жиров, металл- и витаминсодержащих соединений и т. д., считалось, что белок представляет собой основную часть молекулы. Даже после того, как нуклеопротеиды обнаружили в хромосомах и вирусах, биохимики не потеряли уверенности, что нуклеиновые кислоты — это второстепенная часть молекулы.