Открывая тайны океана - Сузюмов Евгений Матвеевич. Страница 34
Глава VI
Все ли тайны океана раскрыты!
Друзья мои, где вы сейчас,
Узнать я не могу.
Давненько что-то не встречал
Я вас на берегу.
Но от разлук и непогод
Есть песни и баян.
Уходит флот, Советский флот
Работать в океан.
Океан – акустическое королевство кривых зеркал
Именно так назвал океан наш виднейший гидроакустик академик Л. М. Бреховских в одной из своих статей. И в этом метком определении заложен глубокий смысл. Вспомним, во-первых, что только звуковые волны в отличие от любых электромагнитных колебаний могут распространяться в океане на большие расстояния. Даже всесжигающий мощный луч оптического лазера в водной среде способен пройти всего лишь сотни метров. Но почему королевство кривых зеркал? Дело в том, что искривление направления распространения звуковых колебаний в водной среде связано с ее неоднородностью. Мы уже познакомились ранее с различными видами неоднородностей в океане. Океан – это слоеный пирог, где каждый слой характеризуется своей температурой, плотностью и соленостью, следовательно, и скорость распространения звука в каждом слое будет различной.
Искривления траектории распространения звуковой волны в океане объясняются общим законом природы: волны в любых средах уходят из зон с повышенной скоростью распространения и стремятся в зоны с меньшей скоростью.
Именно действием этого всеобщего закона объясняется возникновение такого природного явления, как подводный звуковой канал (ПЗК), открытый в 1946 г. советскими и американскими учеными независимо друг от друга. Оказалось, что звуковые колебания способны распространяться в океане на расстояния более 11 000 миль от одного континента до другого, пересекая океаны.
В 1951 г. советские ученые Л. М. Бреховских (ныне академик), доктор технических наук Л. Д. Розенберг, Б. Н. Карлов и Н. И. Сигачев были удостоены за это открытие Государственной премии СССР 1-й степени.
ПЗК возникает тогда, когда скорость звука с глубиной сперва уменьшается, а затем по ряду причин снова возрастает. Только в этом случае звуковые волны не достигают дна, где при отражении рассеиваются, а движутся как бы в определенном канале с минимальной потерей энергии. (Отражение звуковых колебаний от поверхности воды не влияет на дальность их распространения, так как происходит без потерь звуковой энергии.)
Обычно рост скорости звука с глубиной вызван уменьшением сжимаемости воды. Правда, одновременно растет плотность воды, что вызывает уменьшение скорости (она обратно пропорциональна корню квадратному из произведения сжимаемости среды на ее плотность). ПЗК и возникает именно тогда, когда с глубиной влияние уменьшения сжимаемости превысит воздействие роста плотности.
Оказалось, что ПЗК существует в любом море и океане, в районах, где глубины достаточно велики. Правда, ось ПЗК (слой воды, где скорость звука минимальна) находится на различных глубинах. В Арктике она поднята к поверхности, в центральной Атлантике – погружена на глубину более 1000 м. Возможен и двухосевой ПЗК. Это значит, что в данном районе океана имеются два слоя, где скорость звука минимальна.
Академик Л. М. Бреховских считает, что возможности ПЗК далеко еще не использованы. В настоящее время ученые думают применить его для создания системы акустической томографии (в переводе с латинского – «послойного описания») океана, позволяющей осуществлять непрерывное наблюдение за состоянием водных масс и их движением сразу на огромных акваториях океана (площадью до 1 млн. км2). Акустическая томография океана, позволяющая контролировать процессы в толще океана, будет весьма удачно дополнять космическую систему наблюдения океана. Последняя использует электромагнитные волны различных диапазонов, которые дают нужную информацию с поверхности океана, но не проникают в толщу вод.
Известно также, что в космосе из-за вакуума звуковые волны не распространяются, но зато там прекрасные условия для электромагнитных волн. Поэтому исследователи, изучающие Землю из космоса, используют электромагнитные волны, а океанологи исследуют океан с помощью акустических волн. И вот возникает любопытнейшая научная идея: а что если создать специальные преобразователи электромагнитных волн в акустические? Ведь тогда с помощью космонавтов или автоматических орбитальных спутников мы бы смогли достаточно точно прощупывать не только атмосферу, но и глубины океана.
Современная акустика океана – это передовые рубежи океанологии. С ее возможностями познакомимся на одном характерном примере. Широкое использование акустических эхолотов привело к нередкой регистрации «дна-призрака». В этих случаях регистраторы эхолотов отмечали дно на глубине 400–600 м, а при опускании обычного лота-груза на тросе глубина в этих местах оказывалась равной нескольким километрам.
Более тщательное наблюдение за «дном-призраком» выявило, что оно меняет свое положение: утром опускается на глубину, а вечером поднимается к поверхности воды. Ясно было, что эхолот отмечал какой-то перемещающийся объект, видимо, относящийся к живой природе.
После проведения отловов в этих перемещающихся слоях ученые обнаружили там скопления зоопланктона.
Этим дело полностью не прояснилось. Акустики рассчитали, что фактическая концентрация в океане зоопланктона не могла вызвать наблюдаемый звукорассеивающий эффект. Они предложили гидробиологам поискать более крупные объекты. И эти объекты были найдены – ими оказались небольшие рыбы и ракообразные длиной до 10–12 см.
Тогда ученые выдвинули новую гипотезу: причиной появления «дна-призрака» явилось рассеивание звуковых колебаний плавательными пузырями рыб. Физики давно уже знали, что небольшие газовые полости являются акустическими резонаторами, которые сильно рассеивают звуковые колебания определенной для каждой полости частоты. Значит, если частота звука, излучаемая эхолотом, была близка к резонансной частоте плавательных пузырей, то последние начинали резонировать и создавать сильное рассеянное поле.
Оказалось, что даже одна-две рыбки в объеме 1000 м3уже дают эффект рассеяния, близкий к фактически наблюдаемому в океане. Дальнейшие углубленные исследования показали, что рассеивающий эффект возникает и от рыб, и от скоплений зоопланктона. Только последний дает значительный эффект при более высоких излучаемых акустическими приборами частотах.
Значит, звукорассеивающий слой («дно-призрак») состоит из совокупности мелких рыб, зоопланктона и некоторых других представителей океанской фауны.
Ученые разобрались и с причиной вертикальных перемещений этого слоя. С наступлением ночи зоопланктон поднимается вверх, чтобы кормиться и поедать фитопланктон, находящийся только в поверхностных слоях. Рыбы, естественно, следуют за зоопланктоном, так как это уже их пища.
Утром зоопланктон опускается в глубины, где ниже температура воды, и все процессы жизнедеятельности замедляются. Так мудрая природа осуществляет экономию энергии в живых системах. То же можно сказать и по поводу рыбок – второй составляющей содержимого звукорассеивающего слоя.
Гидроакустики нашли практическое применение этому эффекту звукорассеивания. Оказалось, что анализ частот звуковых колебаний, рассеиваемых на том или ином конкретном слое «дна-призрака», позволяет определить качественный состав биоты звукорассеивающего слоя. Такой способ более эффективен, чем простой отлов. Во-первых, такие измерения можно делать на ходу судна. Во-вторых, эффективность траления обычно мала – до 90 % рыбы из данного слоя воды может избежать попадания в трал. И конечно, не нужны затраты времени и усилий на траления, необходимо только обеспечить работу излучателя.
Ясно одно – применение гидроакустики для нужд гидробиологии, а затем и в чисто практических целях будет возрастать. Ведь биологические объекты звукорассеивающего слоя – это пища для более крупных рыб. Значит, появляется возможность оценивать наличие и вид кормовой базы для рыбных стад.