Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы - Марков Александр Владимирович (биолог). Страница 14
Впрочем, следует помнить, что в биологии не бывает правил без исключений и даже видимая безупречность логических рассуждений не всегда может служить критерием истины. Теоретически все-таки можно себе представить единичный вид микроорганизмов, существующий на планете в течение очень долгого времени. Например, если "пищей" ему служат какие-либо вещества, поступающие понемножку из земных недр, а отходы жизнедеятельности либо перерабатываются в геохимических круговоротах без участия живых организмов, либо, к примеру, просто захораниваются в земной коре. Таким образом, этот гипотетический микроорганизм попросту встраивается в уже существующий геохимический цикл, лишь ускоряя его.
Однако в целом на сегодняшний день утверждение "в начале было сообщество" представляется, на мой взгляд, более вероятным, чем "в начале был один вид микробов".
В следующей главе мы подробнее поговорим о микробах, микробных сообществах и о самом долгом из всех этапов истории Земли, в течение которого микробы были господствующей формой жизни.
Что почитать на эту тему в Интернете
В. В. ВЛАСОВ, А. В. ВЛАСОВ. Жизнь начиналась с РНК // Наука из первых рук. № 2(3). 2004. С. 6–19. http://evolbiol.ru/vlasov.htm
Г. А. ЗАВАРЗИН. Становление системы биогеохимических циклов. // Палеонтологический журнал. № 6. 2003. С. 16–24. http://evolbiol. ru/zavarzin2003.htm
А. В. МАРКОВ. Обзор "Зарождение жизни. Прокариотная биосфера" 2003–2007. http://evolbiol.ru/paleobac.htm
A. Ю. РОЗАНОВ. Цианобактерии и, возможно, низшие грибы в метеоритах. 1996. http://www.pereplet.ru/obrazovanie/stsoros/203.html
B. Н. СНЫТНИКОВ, В. Н. ПАРМОН. Жизнь создает планеты? // Наука из первых рук. № о. 2004. С. 20–31. http://evolbiol.ru/npr_snytnikov.pdf
М. А. ФЕДОНКИН. Сужение геохимического базиса жизни и эвкариотнзация биосферы: причинная связь // Палеонтологический журнал. № 6. 2003. С. 33–40.
М. А. ФЕДОНКИН. Геохимический голод и становление царств // Химия и жизнь, http://elementy.ru/lib/25583/25585
Глава 2. Планета микробов
Древнейшие следы жизни
Время появления жизни на Земле точно не известно. Ясно одно: если наша планета когда-то и была безжизненной, то не очень долго. Земля сформировалась 4,5–4,6 млрд лет назад, но от первых 700–800 млн лет ее существования в земной коре осталось слишком мало следов. Главное, не сохранилось осадочных пород, в которых в принципе могли бы быть обнаружены следы жизни.
Но имеются доказательства того, что гидросфера – водная оболочка нашей планеты – появилась очень рано. Об этом свидетельствуют, например, кристаллы циркона возрастом 4,4 млрд лет, обнаруженные в Западной Австралии. Строение и изотопный состав этих кристаллов позволяют предположить, что они сформировались в присутствии воды.
Самым ранним свидетельством жизни считается облегченный изотопный состав углерода из графитовых включений в кристаллах апатита, найденных в Гренландии в отложениях возрастом 3,8 млрд лет. В этих включениях повышено процентное содержание легкого изотопа углерода 12С, что может быть результатом жизнедеятельности автотрофов – организмов, способных синтезировать органику из СО2. Однако в ходе некоторых геологических процессов фракционирование изотопов углерода может проходить и без участия живых организмов. А это означает, что те древние кусочки графита, о которых идет речь, в принципе могли приобрести свой состав и в отсутствие доисторических существ.
Древнейшие ископаемые микроорганизмы возрастом около 3,5 млрд лет из Южной Африки внешне напоминают одноклеточных цианобактерий Synechococcus, хотя на внешнее сходство в данном случае едва ли стоит полагаться. Скорее всего, настоящие цианобактерии появились позже – 2,5–2,7 млрд. лет назад.
Чуть более поздние отложения возрастом 3,7 млрд лет из той же Гренландии содержат в себе уже более достоверные следы жизни. Эти следы опять-таки представляют собой облегченный изотопный состав углерода, но в данном случае вероятность его абиогенного происхождения незначительна.
Но какая это была жизнь – РНКовая или уже "современная", ДНК-РНК-белковая, доклеточная или клеточная, – определить невозможно.
Однако можно уверенно сказать, что 3,55 млрд лет назад на Земле уже жили разнообразные микроорганизмы, напоминающие бактерий. В отложениях этого возраста появляются первые строматолиты – особые слоистые осадочные образования, формирующиеся в результате жизнедеятельности микробных сообществ. Здесь же найдены и сами окаменевшие микроорганизмы, напоминающие формой клеток некоторых современных бактерий. Это, конечно, ДНК-РНК-белковые клетки. С этого момента, собственно, и начинается палеонтологическая летопись как таковая. Самые древние (и самые интересные!) этапы становления жизни, включая эпоху РНК-мира, появление генетического кода и переход к ДНК-РНК-белковой жизни, к сожалению, не оставили внятных следов в земной коре. Поэтому их можно пока реконструировать только теоретически.
Таблица 1. Международная геохронологическая шкала (по Gradstein et al. 2004)
По форме клеток невозможно точно определить, к какой группе микробов относятся древнейшие ископаемые организмы, а кроме формы, от бактерий в палеонтологической летописи практически ничего не остается. Изредка, правда, удается найти "молекулярные окаменелости", или биомаркеры, – остатки некоторых органических молекул (более простых, чем ДНК, РНК и белки). Но и этого недостаточно для идентификации. Поэтому главным способом реконструкции древнейших этапов развития земной жизни сегодня является сравнительно-генетический анализ. Сравнивая между собой геномы современных микробов, ученые строят эволюционные "деревья", восстанавливая тот порядок, в котором происходило разделение эволюционных линий (для этого существуют весьма совершенные и сложные математические методики). Затем, зная примерную скорость накопления генетических изменений в разных участках генома, пытаются провести "калибровку" полученного древа, то есть датировать его узлы (точки разветвления). Палеонтологические данные тоже используются для калибровки там, где это возможно.
Непрошеные помощники [21]
В течение очень долгого времени единственными живыми организмами на планете были прокариоты – бактерии и археи. Они встраивались в геохимические циклы, получая необходимую для жизни энергию за счет различных окислительно-восстановительных реакций.
Последняя фраза, возможно, требует пояснений. Что значит "встраивались в геохимические циклы"? В поверхностных оболочках Земли – литосфере, атмосфере и гидросфере – как в древности, так и поныне происходит множество химических реакций и осуществляется круговорот веществ. Прокариоты с самого начала обладали уникальными высокоэффективными катализаторами – белками-ферментами, которые в принципе в состоянии катализировать (то есть многократно ускорять) чуть ли не любую мыслимую химическую реакцию. Если реакция идет с выделением энергии, эта энергия может быть "подхвачена" ферментами – АТФ-синтазами – и использована для синтеза АТФ. Имея запас АТФ, другие ферменты получают возможность осуществлять и такие химические реакции, которые идут не с выделением, а с поглощением энергии. В том числе синтез органики из углекислого газа. Вот, собственно, и весь секрет древней микробной жизни, ее химическая основа.