Эволюция. Триумф идеи - Циммер Карл. Страница 38

ЭВОЛЮЦИЯ И ВРЕМЯ.

Скорее всего, жизни потребовалось не слишком много времени, чтобы развиться от первых организмов, содержавших минимум генов, до настоящих микроорганизмов, таких как цианобактерии, в которых уже более 3000 генов. Пока у ученых мало данных о ранней хронологии жизни, но известные факты позволяют предположить, что вначале эволюция шла быстрыми темпами. Окаменелости из Австралии, к примеру, показывают, что 3,5 млрд лет назад на Земле определенно уже жили микроорганизмы, похожие на сегодняшние цианобактерии. Молекулярные следы из Гренландии свидетельствуют, что 3,85 млрд лет назад, т. е. на 350 млн лет раньше, на нашей планете уже была какая-то жизнь. Ученые не могут точно сказать, какого рода жизнь оставила в Гренландии свои следы, но ясно, что эта жизнь уже начала менять химический состав океанов и атмосферы на глобальном уровне. Возможно, это были микроорганизмы, подобные цианобактериям, возможно, всего лишь организмы мира РНК, — а может быть, и что-то промежуточное.

Теперь сравним то, что нам известно об истории жизни, с тем, что мы знаем об истории нашей планеты. Земле 4,55 млрд лет, и первые несколько сотен миллионов лет она то и дело плавилась целиком в результате страшных столкновений. Любая жизнь, возникшая в то яростное время, наверняка погибла бы. Но даже после того, как планета достигла своего сегодняшнего размера и начали формироваться океаны, с небес каждые несколько миллионов лет продолжали падать громадные камни по миллиону тонн. Если в моменты таких катастроф на Земле существовала жизнь, она могла уцелеть разве что в каких-то недоступных убежищах — к примеру, в полостях подводных вулканов. Но могла и не уцелеть. Последний ураган титанических столкновений произошел 3,9 млрд лет назад; 50 млн лет спустя жизнь на Земле уже играла заметную роль, а еще через 350 млн лет на планете определенно изобиловали сложные микроорганизмы.

Как могла столь сложная генетическая система развиться так быстро? Биологи, создававшие синтетическую теорию эволюции, рассматривали в основном небольшие генетические изменения — к примеру, замену А на G в определенном месте определенного гена — и их вклад в крупные эволюционные перемены. Но оказывается, у эволюции есть еще одна важная составляющая: случайная дупликация целых генов.

Дупликация генов происходит примерно с той же частотой, что и мутации с заменой единственного основания в составе гена. Какая судьба ожидает новую копию гена, неизвестно. Может быть, она будет производить дополнительно тот же белок, который производил первоначальный ген, и тем самым увеличит приспособленность организма. Скажем, если этот белок играет важную роль в переработке пищи, то большее количество его молекул позволит организму питаться более эффективно. В этом случае естественный отбор будет поддерживать существование двух одинаковых генов.

Но второй ген может оказаться и лишним. В этом случае мутация, результатом которой стала вторая копия, никак не повлияет на приспособленность организма — ведь оригинальный ген продолжает делать свою работу. Мутации лишних генов в большинстве случаев просто делают их совершенно бесполезными. В нашей ДНК полно таких генетических призраков, известных как псевдогены. Но иногда мутация так преобразует ген-копию, что тот получает способность производить новые белки, которые, в свою очередь, могут выполнять новые задачи.

Геномы и бактерий, и архей, и эукариот содержат сотни дублированных генов, которые могут быть объединены в семейства — примерно так же, как группируются в семейства биологические виды. В том и другом случае принадлежность к одному семейству означает общее происхождение. Семейства генов — результат множества циклов дупликации генов, восходящей к самым ранним этапам развития жизни. Гены тогда не просто мутировали: они размножались.

ЭВОЛЮЦИЯ ЧЕРЕЗ СЛИЯНИЕ.

Даже после того как древо жизни разделилось на три основных ствола, эволюции удавалось воссоединять отдаленные ветви. Нам следовало бы поблагодарить ее за это, ведь мы сами — продукт одного из таких союзов. Другие слияния дали жизнь растениям и водорослям. Если бы этого не произошло, на Земле и до сих пор было бы мало пригодного для дыхания кислорода, а мы бы просто не умели им дышать.

Наше дыхание полностью зависит от особых пузырьков в наших клетках, формой напоминающих колбаски, — митохондрий. Почти у всех эукариот есть митохондрии, которые при помощи кислорода и других химических веществ создают топливо для наших клеток. В конце XIX в., когда были открыты митохондрии, ученые были поражены тем, как эти органеллы похожи на бактерии. Некоторые даже заявляли, что митохондрии и есть бактерии, что почему-то все клетки нашего организма поражены кислорододышащими микробами и обеспечивают им убежище в обмен на топливо.

Ученые уже знали, что некоторые бактерии способны жить внутри животных или растений и не вызывать при этом болезней. Во многих случаях они вступают с организмом во взаимовыгодное сотрудничество, известное как симбиоз. Так, бактерии, живущие в коровах, помогают им переваривать жесткие растительные ткани, которыми питаются жвачные; значит, коровы потребляют и некоторых бактерий. Тем не менее одно дело сказать, что бактерии живут в наших телах, и другое — что они живут внутри наших клеток. Многие ученые сохраняли скептицизм.

Тем временем внутри клеток обнаруживались все новые и новые бактериеподобные объекты. У растений, к примеру, имеется в клетках второй комплект пузырьков, при помощи которых осуществляется фотосинтез. Эти органеллы известны как хлоропласты; они поглощают солнечный свет и используют его энергию для соединения воды и углекислого газа в органическое вещество. Хлоропласты, как и митохондрии, очень похожи на бактерии. Некоторые ученые пришли к выводу, что хлоропласта тоже представляют собой форму симбиотических бактерий, — точнее, что они происходят от цианобактерий — микробов, которые поглощают солнечный свет и обитают в океанах и пресной воде.

До начала 1960-х гг. симбиотическая теория то выходила из моды, то снова становилась популярной. Ученые в большинстве своем сосредоточились на выяснении того, как ДНК в ядрах наших клеток хранит генетическую информацию; симбиотическая теория с ее утверждением о том, что наши клетки образованы более чем из одного организма, представлялась им абсурдной. Но затем ученые обнаружили, что митохондрии и хлоропласта обладают собственными генами. При помощи собственной ДНК они производят собственные белки, а при делении копируют свою ДНК, в точности как бактерии.

И все же в 1960-е у ученых еще не было возможности выяснить, какую в точности ДНК несут в себе митохондрии и хлоропласта. Может быть, сомневались некоторые скептики, их гены сформировались внутри ядра, а затем в какой-то момент эволюция вытащила их наружу и пристроила во внешних структурах. Но в середине 1970-х две команды микробиологов — одна под руководством Карла Вёзе, другая в Университете Дальхузи в Новой Шотландии (Канада) под руководством Форда Дулитла — показали, что на самом деле это не так. Они исследовали гены в хлоропластах некоторых видов водорослей и выяснили, что они совсем не похожи на гены в ядре клеток. Оказалось, что ДНК в хлоропластах — это ДНК цианобактерий.

Гены митохондрии имеют еще более поразительную историю. В конце 1970-х гг. команда Дулитла доказала, что это тоже бактериальные гены, а в дальнейшем другие ученые определили даже, каким именно бактериям они когда-то принадлежали. В 1998 г. Стив Андерсон из шведского Университета Упсалы с коллегами открыла ближайших, насколько можно судить, родичей митохондрии: это оказалась Rickettsia prowazekii, зловредная бактерия, вызывающая тиф.

Rickettsia переносится вшами и живет обычно в крысах, но может паразитировать и на человеке. Если люди живут в грязи и тесноте, где вольготно и вшам, и крысам, — в трущобах или военных лагерях, например, — то может вспыхнуть эпидемия тифа. Бактерии, проникая в организм человека через укус вши, пробираются в клетки хозяина, где начинают питаться и размножаться. Возникает сильная лихорадка и невыносимые боли, иногда болезнь заканчивается смертью.