Десять великих идей науки. Как устроен наш мир. - Эткинз (Эткинс) Питер. Страница 72
Хаббл пошел дальше. В 1923-29 гг. он пришел к удивительному заключению, что скорость удаления пропорциональна расстоянию от нас, чем дальше галактика, тем быстрее она от нас улетает. Это наблюдение теперь выражается в общем законе Вселеноой:
Скорость удаления = постоянная Хаббла × расстояние от нас.
Постоянная Хаббла такова, что галактика на расстоянии 10 миллионов световых лет кажется удаляющейся от нас со скоростью 200 км в секунду, галактика на расстоянии 20 миллионов световых лет кажется удаляющейся от нас со скоростью 400 км в секунду, и так далее.
Хаббл сделал вывод, хотя даже забыл упомянуть о нем в первой работе, что Вселенная расширяется. Каждая галактика подобна точке, отмечающей положение на слое резины. Для дальнейших ссылок представим себе галактики в виде маленьких монет, наклеенных на поверхность резинового баллона: когда резина растягивается, монеты расходятся в стороны, но сами они не растягиваются (рис. 8.2). Следствие этого расширения ужасно, ибо если мы проследим его назад во времени, то должен настать момент, когда все монеты совпадут, а Вселенная превратится в единственную точку. То есть Вселенная, по-видимому, имела начало. Я ввел уклончивое слово «по-видимому», потому что в космологии ничего нельзя утверждать вполне прямо, особенно в криволинейном пространстве-времени, и позднее мне придется дополнить это умозаключение. Однако на данной стадии мы можем считать одним из следствий великой идеи о том, что Вселенная расширяется, утверждение, что был момент, когда все это началось. Это действительно захватывает дух и вызывает множество вопросов, некоторые из которых, например, как разворачивается Вселенная [36], мы исследуем в этой главе.
Рис. 8.2.Модель, показывающая, как мы можем представить себе расширяющуюся Вселенную. Монеты, приклеенные к поверхности сферы, представляют галактики. Когда Вселенная расширяется — что представлено расширением сферы, — галактики удаляются друг от друга, но сами не расширяются. В соответствии с этой моделью, наблюдатель, находящийся на любой монете, будет видеть, как другие монеты удаляются: из разбегания галактик не следует, что мы занимаем во Вселенной особое место.
Существует несколько аспектов нашего описания, которые мы должны отправить на отдых, некоторые теперь, некоторые позже. Где бы мы ни поместили наши телескопы, мы видим галактики, улетающие от нас по мере расширения Вселенной. Однако это не совсем верно, некоторые близкие галактики — одна из них туманность Андромеды — немного угрожающе движутся по направлению к нам. Это «локальное» движение является так называемым особым движениемгалактики (где «особое» означает скорее индивидуальное, чем необычное), движением относительно каркаса расширяющейся Вселенной. Мы можем представлять себе галактики блуждающими по пространству и отвечающими на притяжение друг друга. Для близких друг к другу галактик это движение может преодолевать космическое разлетание, так же как две монеты, скользящие по слою резины, могут съезжаться, несмотря даже на то, что резина растягивается.
Вторым аспектом является тот факт, что расширение, которое мы наблюдаем, как нам кажется, помещает нас снова в центр мира, поскольку все галактики удаляются от нас. Это неравноправие, однако, иллюзорно, так как, где бы в космосе мы ни находились, мы все равно видели бы разлетание прочь от нас. Аналогия монет, приклеенных к баллону, показывает, что происходит: на какой бы монете мы ни стояли, мы увидим, что соседние монеты удаляются от нас. Это наблюдение является сутью принципа, воплощающего политическую корректность, космологического принципа, который утверждает, что Вселенная выглядит одинаково, где бы ни находился наблюдатель. Смирение снова возвращается на свое место.
Перед тем как перейти к делу, коснемся одного технического момента. Хаббл был не вполне прав, думая, что он измерил скорость разбегания галактик. Мы можем интерпретировать красное смещение как эффект Допплера и, значит, как указание на скорость удаления галактик, только для объектов, которые близки к нам. Свет от очень удаленных объектов начал свой путь к нам давным-давно; Вселенная с тех пор расширилась, и волны света растянулись. Правильной интерпретацией красного смещения, пригодной как для близких, так и для очень удаленных галактик, является та, в которой оно есть мера изменения масштабаВселенной за время, прошедшее от момента излучения света до момента его регистрации.
Так, если длина волны смещена к красному каким-либо фактором, то волна начала свое путешествие, когда Вселенная была намного меньше. Это необычайно, что, глядя в пространство, мы видим Вселенную такой, какой она была, когда ее масштаб был меньше чем теперь.
Если бы галактики двигались с постоянной скоростью, мы могли бы использовать постоянную Хаббла, чтобы вычислить, когда вся видимая Вселенная была одной точкой. Нам придется вернуться к этому позже, но здесь подходящий случай начать. На таком основании мы можем считать, что Вселенная возникла приблизительно 15 миллиардов лет назад. Событие, которое знаменует начало Вселенной, британский астроном Фред Хойл (1915-2001), выступая по радио в 1950 г., назвал Большим Взрывом. Хойл использовал этот термин пренебрежительно [37], поскольку он предпочитал свою собственную теорию устойчивого состоянияВселенной, в которой, по мере расширения Вселенной, в нее вбрасывается вещество, чтобы обеспечить сохранение его плотности. При известной скорости расширения Вселенной, которая принималась в теории устойчивого состояния, в каждом кубическом метре пространства каждые 10 миллиардов лет должны порождаться всего несколько атомов водорода, поэтому требования к тому, кто производит материю, не слишком обременительны. Конечно, мы можем даже представить себе напряжение натянувшегося пространства, порождающего атомы, поэтому рождение вещества не является абсурдным a priori; но сотворение частиц, очевидно, отвергает закон сохранения энергии, и поэтому это предположение дурно пахнет, несмотря на его благонамеренность.
Теория устойчивого состояния привлекала Хойла, поскольку позволяла избежать вопроса о том, что случилось в начале, ибо начала не было: Вселенная всегда была здесь и всегда расширялась. Она также позволяла избежать еще более головоломного вопроса о том, что происходило до того, как Вселенная появилась на свет. Однако возможность избегания вопросов не может быть оправданием для принятия какой-либо теории; разумеется, это лишь кажущееся упрощение, и еще неизвестно, что труднее: понять, почему Вселенная всегда была тут, или найти механизм ее возникновения. В целом для ученых причинно-следственная цепочка более приятна, чем воспоминания о вечности.
Модель устойчивого состояния Вселенной, независимо развитая Генрихом Бонди и Томасом Голдом в работах, опубликованных с 1948 по 1949 гг., теперь огромное большинство ученых не считает правдоподобной, и она, подобно самому Хойлу, почила в Бозе. Однако нам не следует слишком поспешно насмехаться над забракованной теорией: далее мы увидим, что современные представления вернулись к ее более изощренной версии, в которой целые вселенные вбрасываются в бытие даже чаще, чем теория устойчивого состояния требует того от малюсеньких атомов водорода.
В высшей степени впечатляющими являются обнаружение космического фонового излучения и его детальные свойства, которые мы вкратце опишем, фактически составляющие огромный корпус свидетельств говорящих в пользу модели Большого Взрыва. Некоторые космологи сегодня сомневаются, что Вселенная в раннем возрасте прошла через стадию, когда она была очень плотной и очень горячей. Но на самом деле с помощью необычайного сочетания теории, наблюдений и растягивания наших знаний об очень малом для объяснения очень большого, мы можем сегодня со значительной уверенностью проследить историю Вселенной назад во времени, вплоть до малейших долей первой секунды после ее рождения. Астрономическим наследием Хаббла является экспериментальное открытие расширения Вселенной; его интеллектуальное наследие, однако, гораздо значительнее, ибо оно включает в себя самое малое, осознание того факта, что такие карлики, как мы, могут проследить свою историю почти до начала времен. Это интеллектуальное наследие мы исследуем в оставшейся части этой главы и увидим, что научные идеи, рождающиеся в наших лилипутских лабораториях, способны объять космос.