Проблемы эволюции и теоретические вопросы систематики - Скворцов Алексей. Страница 6

Представление о наследовании приобретенных признаков заходит в тупик и перед тем обыкновенным фактом, что потомство не наследует столь существенной «приобретенной» характеристики родителей, как их возраст: возьмем ли мы семечко от тысячелетнего дерева или от молоденького, только что вступившего в плодоношение, – в обоих случаях сеянцы будут начинать свое развитие от одной и той же точки.

Вейсман выдвинул еще один важный тезис: об обособленности «зародышевой плазмы» от «сомы». На современном языке мы бы могли сказать, что каждая живая система состоит из двух подсистем: несущей наследственную информацию и управляющей развитием особи (зародышевая плазма) и осуществляющей жизнедеятельность (сома). При этом элементы первой подсистемы – кодирующие структуры – не могут возникать заново или из других структур тела (сомы) либо превращаться в другие структуры: они умножаются только воспроизводя себя путем матричной репликации.

Очевидна тесная логическая связь второго тезиса Вейсмана с первым – о невозможности наследования приобретенных признаков; из сочетания обоих тезисов следует, что наследственная информация в ходе онтогенеза особи может только копироваться или же «развертываться» (проявляться) на фенотип, но не может с фенотипа «свертываться».

Фундаментальное значение положений Вейсмана не только для теории эволюции, но и для всей биологии позволяет говорить о них как об аксиомах биологии. При этом тезис об обособленности кодирующих структур от сомы, очевидно, в логическом порядке должен быть первым; его можно назвать аксиомой организации живого (или первой аксиомой Вейсмана), а тезис о ненаследуемости приобретенных признаков – аксиомой наследования (или второй аксиомой Вейсмана) [13].

Однако полное признание идеи Вейсмана получили далеко не сразу. Когда в 1950-х годах Дж. Уотсон и Ф. Крик создали представление о двойной спирали ДНК как носителе наследственной информации, многие биологи восприняли это чуть ли не как потрясение основ: господствовало убеждение, что такая роль должна принадлежать белку. А ведь первая аксиома Вейсмана как раз позволяла предполагать, что в отличие от сомы, построенной в основном из белков, «зародышевая плазма» может иметь другую химическую основу В сенсации, вызванной открытием Уотсона и Крика, имени Вейсмана почти и не было слышно, а ведь двойная спираль оказалось не чем иным, как материальной конкретизацией «зародышевой плазмы».

Недооценка значения аксиомы Вейсмана сказалась и позже. Когда в 1970-х годах открыли обратную транскрипцию (переписка информации с РНК на ДНК), антидарвинисты не преминули заявить, что найден путь переноса информации с фенотипа на генотип. Но, с точки зрения аксиомы Вейсмана, ясно, что и ДНК, и РНК, и процессы транскрипции находятся в рамках «зародышевой плазмы», и только процессы трансляции представляют собой принципиальный переход от «зародышевой плазмы» к соме. Однако для трансляции, как и следовало ожидать, обратного хода открыто не было.

Но вернемся к рубежу XIX–XX вв. Отказ от признания наследования приобретенных признаков выдвинул на первый план значение неопределенной (мутационной) изменчивости. Однако в те времена она была еще мало изучена; в частности, были не ясны ее причины и источники, механизмы и частота. Еще в 1922 г. Л.С. Берг категорически утверждал, что мутации столь редки и малочисленны, что естественному отбору не из чего отбирать (главный аргумент Берга против дарвинизма). Вейсман понимал, что для логической завершенности дарвиновской теории необходимо найти источники неопределенной изменчивости, и пытался решить этот вопрос, но безуспешно.

Тогда же С.И. Коржинский и X. Де Фриз предложили теорию эволюции, объяснявшую появление новых видов только мутациями – внезапными, непредвиденными и резкими изменениями наследственного багажа организмов. Естественному отбору отводилась лишь второстепенная роль. «Мутационизм» и «менделизм», отстаивающие большое постоянство наследственных задатков, стали противопоставляться «устаревшему» дарвинизму. Период такого «генетического антидарвинизма» [14] длился почти треть XX в. Ослепленные «математической точностью» экспериментальных генетических данных, даже ведущие биологи не видели, что «мутационизм» как раз и служит тем самым недостававшим дарвиновской теории логическим звеном, которое искал Вейсман. Еще в 1932 г. этого не видел крупнейший генетик-экспериментатор того времени Т. Морган. Увидели же не экспериментаторы, а натуралисты-энтомологи С.С. Четвериков, а затем и Ф.Г. Добжанский [15]. С их работ начинается современная теория эволюции (современный дарвинизм), называемая часто синтетической теорией эволюции.

Резюмируя, можно сказать, что основные этапы развития теории эволюции состояли в обнаружении логической связи и даже логической необходимости там, где, казалось, существовали непреодолимые противоречия. Такова примечательная особенность истории эволюционной теории. Заслуживает внимания и еще одна характерная особенность этой истории. Основоположником теории был биолог широкого профиля, истинный натуралист Ч. Дарвин. И все те, кто в дальнейшем внес наибольший вклад в развитие теории (М. Вагнер, А. Вейсман, С.С. Четвертаков, Ф.Г. Добжанский, И.И. Шмальгаузен), были биологами широкого профиля, натуралистами, систематиками. Той же широтой знаний и интересов отличались орнитолог-натуралист и систематик Э. Майр, зоолог и палеозоолог-систематик Дж. Г. Симпсон, орнитолог-натуралист и генетик Н.В. Тимофеев-Ресовский, оставившие заметный след в истории дарвинизма. И хотя со временем слово «натуралист» стало немодным, Ф.Г. Добжанский, например, и под конец жизни, после десятилетий работы по генетике популяций, продолжал называть себя натуралистом. В то же время экспериментаторы и лабораторные исследователи, начиная с самого Г. Менделя, при всей значимости полученных ими результатов, не могли найти им должного места в теории эволюции и заметно развить ее. Таким образом, аналитический подход – нацеленность на глубину проникновения и количественную точность суждений в какой-либо одной избранной области биологии – оказался для построения эволюционной теории не столь важным, как подход синтетический – способность к широкому охвату многообразия живых существ и их отношений между собой и к среде обитания.

Дарвинизм и антидарвинизм

Несмотря на все успехи дарвиновской теории, все еще продолжают существовать представления, что эволюция живых организмов – либо вообще имеет недарвиновский характер, либо наряду с дарвиновской существует и недарвиновская эволюция. Как заметил один из виднейших отечественных противников дарвинизма А.А. Любищев, «рать антидарвинистов не так мала, как думают» [16].

Знакомясь с антидарвиновскими представлениями, всегда трудно отделаться от впечатления, что главный их источник – эмоционально-психологический, определенная настроенность ума, благодаря которой некоторые сверхценные для данного автора идеи и представления выводятся им из-под логического контроля. Обратившись же к логике, нетрудно убедиться, что если эволюция живых существ вообще возможна, она необходимо должна быть дарвиновской.

Поставим два простых вопроса. Можно ли говорить о жизнеспособности (в самом широком смысле этого понятия, включая в него и воспроизведение потомства) организмов или целых видов безотносительно к условиям их существования? И может ли быть, чтобы самые разные организмы в самых разных условиях были бы одинаково жизнеспособны? Всякий, кто хоть сколько-нибудь знаком с живой природой, на оба вопроса ответит отрицательно. Любой организм может успешно существовать только в определенном, специфическом диапазоне условий. Если же этот организм изменится (т. е. изменятся его структуры и функции), неизбежно должны измениться и его отношения с окружающим миром. (Все это в равной мере относится как к отдельным особям, так и к популяциям и целым видам.) А отсюда уже логически вытекает и адаптивный характер эволюции, и неизбежность естественного отбора.