Что ответить дарвинисту? Часть I - Рухленко Илья. Страница 22
Вот так неожиданно ситуация развернулась ровно на 180 градусов. Буквально только что (пока мы не вдавались в подробности) эта ситуация выглядела совершенно как «эволюция случайных генов под действием сходных условий среды». А разумный дизайн плёлся где-то на задворках в качестве «притянутой за уши невероятной спекуляции». Но стоило нам ознакомиться с конкретными фактами, как теперь нам уже необходимо защищать нашу теорию о «случайной эволюции из случайных генов», изобретая дополнительные объяснения, почему это наша «случайная эволюция» демонстрирует столь серьезные повторы своих «случайных решений».
И объяснения этому факту, конечно, приводятся (в рамках дарвинизма). Считается, что это была действительно независимая эволюция, которая, тем не менее, привела к конвергентному (генетическому) сходству. На независимый характер этой эволюции указывает то, что несмотря на общее большое сходство, между АФГП нототениевых и тресковых имеется и целый ряд отличий (Бильданова и др., 2012:262):
…гены АФГП нототениевых и тресковых имеют отличия, которые убедительно показывают независимую эволюцию АФГП-генов трески: а) различные сигнальные пептидные последовательности; б) разные последовательности спейсеров, соединяющих отдельные гены АФГП в полипротеине, что приводит к различным механизмам процессинга предшественников полипротеина; в) разные последовательности, кодирующие повторы Thr-Ala/Pro-Ala; г) геномные локусы АФГП гена трески и нототениевых АФГП тоже отличаются (Cheng, 1998)…
В результате авторы обзора приходят к выводу:
Таким образом, почти идентичные АФГП двух не связанных групп рыб представляют собой пример конвергенции белковых последовательностей, т. е. развитие аналогичного белка из разных предков в результате воздействия одинаковых условий окружающей среды.
Ну что же. Эволюционное объяснение найдено. Оказывается, почти идентичные белки вполне могут возникать из разных предковых белков, если того требуют одинаковые условия среды. Действительно, можно предположить, что функция связывания со льдом требовала примерно сходных аминокислотных последовательностей в белке. Вот в результате этих требований (и соответствующей эволюции под действием естественного отбора) и получилось итоговое сходство обсуждаемых белков.
Правда, мы совсем недавно писали, что имеется большое разнообразие белков-антифризов. Поэтому, казалось бы, АФГП тресковых и нототениевых было бы совсем не обязательно становиться почти идентичными в ходе «случайной эволюции». Но вот теперь, оказывается, что обязательно. Ну что же, простим этот маленький каприз нашей «случайной эволюции». Ведь, как известно, неисповедимы пути её.
Тем не менее, еще раз отметим, что версия «случайной эволюции» становится уже далеко не такой «очевидной», какой она выглядела до ознакомления с конкретными антифризами тресковых и нототениевых рыб. В то же время такие (почти идентичные) решения, применённые в разных (независимых) биологических таксонах – уже гораздо лучше вписываются в концепцию разумного дизайна этих таксонов, чем это выглядело вначале. [50]
Но может быть, «почти идентичность» АФГП тресковых и нототениевых – это просто такое случайное исключение из правил? Может быть, АФП других организмов ясно демонстрируют совершенно случайный характер своего образования?
Ну что же, давайте посмотрим. Читаем про антифризные белки следующей группы (Бильданова и др., 2012:262):
АФП I типа рыб являются полифилетическими по происхождению, они обнаружены у представителей трех неродственных отрядов костистых рыб и представляют собой пример конвергентной эволюции (Hobbs et al., 2011).
Вот это да! Оказывается, удивительная ситуация со странными повторами… повторяется снова. Причем теперь уже в более тяжелом варианте. В данном случае получается, что антифризные белки АФП I имеются уже у трех неродственных отрядов рыб. Конкретно в работе озвучивается керчак (скорпенообразные), зимняя камбала (камбалообразные) и губан (окунеобразные) (Бильданова и др., 2012:252).
Как объяснить теперь уже эти независимые повторы? Если это не «разумный дизайн» (сходные инженерные решения, примененные для выполнения сходных задач в совершенно разных биологических таксонах), то тогда что же это такое?
В рамках эволюционных воззрений – это тройное (!) совпадение опять «списывается» на конвергенцию. То есть, антифризные белки этой группы так похожи друг на друга у представителей трех разных отрядов рыб просто потому, что… так получилось. Может быть, на роль будущих антифризных белков были избраны похожие исходные белки (чисто случайно, конечно). Например, вышеупомянутые белки хориона или кератина во всех трех отрядах рыб (просто случайно так совпало). Или же исходные белки были разные, но одинаковые требования к этим белкам (реагировать с кристаллами льда) в итоге привели к сходной аминокислотной последовательности в исходно разных белках. Несмотря на то, что те же самые требования к белкам привели (почему-то) к другой аминокислотной последовательности у тресковых и нототениевых. А у сельди и корюшки – к третьей аминокислотной последовательности (см. ниже). И у диатомовых водорослей – тоже к другой. У пшеницы – еще к другой. У моркови – тоже к другой. У грибов – опять к другой. У бабочек – снова к другой. У жуков – снова к другой. И у бактерий… правильно, тоже к другой. Итак, у всех вышеперечисленных организмов, «одинаковые требования среды» привели к другим антифризным белкам. А вот в трех независимых отрядах рыб (скорпенообразных, камбалообразных и губановых) эти же требования среды почему-то потребовали от аминокислот выстроиться именно в определенные (сходные) аминокислотные последовательности. Которые сами же дарвинисты непременно объявили бы гомологичными (т. е. происходящими от одного предка), если бы эти белки не были найдены в трех независимых таксонах рыб.
Да, именно так нас и учит теория эволюции (даёт вот такие объяснения). В одних случаях случайная эволюция совершенно свободно «вылепляет» самые разные антифризные аминокислотные последовательности из самых разных белков. И у неё всё получается. А в других случаях эта же случайная эволюция не может поступить никак иначе, кроме как повторить сходную антифризную аминокислотную последовательность три независимых раза подряд.
Но может быть, это совсем не совпадение? Может быть, для такого решения имелись какие-то резонные основания? И именно поэтому наша «случайная эволюция» и прошла по одному и тому же пути три раза подряд? Но если мы сделаем такое предположение, то сразу же поймем, что точно такое же предположение можно сделать и в рамках концепции разумного дизайна. Что имелись какие-то (резонные) основания создать именно такую (а не какую-то другую) антифризную аминокислотную последовательность в этих трех конкретных случаях. И именно поэтому некий разумный дизайнер так и сделал – применил сходное решение три раза подряд в тех независимых отрядах рыб, которым это решение подходило (по каким-то причинам).
Однако мы пока делаем вид, что как бы верим эволюционным объяснениям (про многочисленные «конвергенции»). Действительно, пока еще ничего особо невозможного не было озвучено. Ну, совпало так три раза подряд, что «мишенями» для случайных мутаций при создании белков-антифризов в трех разных отрядах рыб послужили какие-то, допустим, исходно похожие белки. Поэтому продолжаем читать соответствующий обзор.
Переходим к чтению про белки-антифризы следующей группы… И теперь уже падаем со стула. Читаем (Бильданова и др., 2012:263):
Независимое появление АФП II типа в трех неродственных ветвях костистых рыб (сельди, корюшки и морского ворона) является экстраординарным по нескольким причинам (Graham et al., 2008a). Эти гомологи лектинов являются единственными лектинами, у которых пятый дисульфидный мостик специфически локализован, и они гораздо более похожи друг на друга, чем на любой другой гомолог лектинов. Их сходство распространяется и на уровень последовательности ДНК, где даже интроны имеют до 97 % гомологии. В базах данных не были обнаружены родственные аминокислотные последовательности других видов с гомологией более 40 %. Это согласуется с данными геномной Саузерн гибридизации, которая показала отсутствие гомологов АФП второго типа у других видов рыб. Консервативность интронов и экзонов, отсутствие корреляции между эволюционным расстоянием и скоростью мутаций, соотношение синонимичных и несинонимичных замен в кодонах не соответствуют гипотезе о существовании предшественника этих генов, который был элиминирован во всех таксонах костистых рыб.
Некоторые авторы считают, что горизонтальный перенос гена АФП II типа является наиболее вероятным объяснением большой гомологии аминокислотной последовательности (до 85 %), низкой частоты синонимичных мутаций и высокой консервативности числа, положения и последовательности интронов (Graham et al., 2008a).