Атлетичный мозг. Как нейробиология совершает революцию в спорте и помогает вам добиться высоких резу - Кетвала Амит. Страница 5

В 1996 г. Дэвид Киршен и Даниэл Лэйби с коллегами проверили остроту зрения у 387 профессиональных бейсболистов, иными словами (продолжая аналогию с цифровой камерой), посчитали число пикселей на светочувствительной матрице человеческого глаза. [17] По сравнению с обычными людьми, спортсмены показали впечатляющие результаты: оценку «превосходно» получили 58 % бейсболистов и лишь 18 % испытуемых из контрольной группы, не занимавшихся спортом.

В среднем у игроков Высшей бейсбольной лиги США (не считая питчеров, выполняющих подачи) была зафиксирована острота зрения 6/3,35 [18] на правом глазу и 6/3,6 [19] на левом. Эта запись означает, что если бы спортсмен смотрел на предмет с расстояния шести метров, то человеку с нормальным зрением (6/6, или 1,0), чтобы разглядеть предмет с той же четкостью, пришлось бы приблизиться к нему соответственно на 3,35 или на 3,6 метра.

Итак, острота зрения в значительной мере зависит от числа палочек и колбочек в структуре сетчатки глаза, их плотность может варьировать от 100 000 до 324 000 на квадратный миллиметр. Считается, что этот показатель у каждого человека заложен генетически, то есть успех многих именитых спортсменов отчасти обусловлен хорошим зрением, данным от природы. В результате исследования с участием 157 спортсменов-олимпийцев, представлявших различные виды спорта, было установлено, что у представителей таких видов, как стрельба из лука и софтбол, зрение лучше, чем у легкоатлетов и боксеров. [20] Спортсменам без очков и линз, чтобы достичь вершин в спорте, где залогом успеха является отменное зрение, приходится прилагать дополнительные усилия.

Лучшим игрокам в бейсболе благодаря прекрасному зрению гораздо легче получать информацию о траектории движения объектов на площадке. Бейсбольный мяч имеет характерной формы шов, прошитый красной ниткой, что помогает отбивающему (бэттеру) определить направление закрутки подачи, а также предсказать траекторию дальнейшего движения мяча. Острое зрение позволяет бэттеру считывать эту важнейшую информацию на ранних стадиях полета мяча, что дает ему больше времени на принятие решения и успешное отражение подачи. Такая описательная парадигма получила название «аппаратное и программное обеспечение»: острое зрение («аппаратная часть») облегчает процесс идентификации важных деталей, а мозг («программная часть») получает больше данных для прогнозирования последующего полета мяча. [21]

Это не значит, что люди с плохим зрением не могут достичь успеха в спорте; просто им необходимо несколько иначе подходить к развитию соответствующих навыков, то есть к апгрейду «программной части». Так, известный крикетист Дон Брэдмен, признанный одним из выдающихся бэтсменов и в целом представителей этого вида спорта, имел зрение хуже среднего, из-за чего его не взяли в армию во время Второй мировой войны. Успех в спорте ему обеспечила игра, в которую он играл сам с собой в детстве, не подозревая, что тем самым он развивал зрительно-моторную координацию. Будущий знаменитый крикетист часами стучал мячом для гольфа по резервуару с водой на заднем дворе дома, отбивая мяч столбиком крикетной калитки. Позднее Брэдмен вспоминал: «Тогда для меня это было просто игрой. Но сейчас я понимаю, что, пожалуй, это было идеальным упражнением на отработку точности удара и прекрасной тренировкой для глаз. Мячик для гольфа отскакивал очень быстро, и я едва успевал изготовиться для того, чтобы отбить его». Брэдмену удалось компенсировать недостаток зрения за счет развития зрительно-моторной координации: он реагировал на бросок гораздо позже, чем другие игроки, но при этом у него получался идеальный прием подачи.

Вместе с тем людям, от природы имеющим острое и хорошее пространственное зрение, как правило, легче дается «апгрейд ПО».

У плимутских роботов разница между аппаратной частью и программным обеспечением состоит именно в этом. Процесс обработки визуальной информации у них является, по выражению Калверхауса, многопоточным. Данные анализируются параллельно по разным аспектам, что ускоряет получение результата. «По одному потоку данные с камеры поступают в буфер, по другим происходит их обработка, – объясняет он. – Есть поток данных о локализации мяча и линий на поле, есть – о местонахождении различных препятствий или других роботов». Человеческий мозг выполняет схожие операции, только по нему трудно определить, где именно заканчивается «аппаратная часть» и начинается «программная».

Единство противоположностей

Угарный газ не имеет ни цвета, ни запаха и опасен для человека. Он связывает кислород крови, нарушая снабжение мозга, в результате нейроны, лишенные кислорода, погибают. В начале 1990-х гг. женщина в возрасте 35 лет, известная только по инициалам Д. Ф., пережила отравление угарным газом, вследствие чего у нее в затылочной доле обоих полушарий головного мозга образовались два одинаковых пораженных участка. История болезни Д. Ф. получила известность среди нейробиологов, поскольку дала возможность ученым выяснить, что процесс обработки визуальной информации у человека тоже разделен на несколько потоков для повышения эффективности, как и у роботов-футболистов.

На первом этапе обработки визуальной информации клетки сетчатки преобразуют свет в нервные импульсы. Формирование визуальной картины окружающего мира происходит в мозгу постепенно. Процесс начинается с нейронов, сосредоточенных в затылочной доле; они отвечают за базовые зрительные образы. По мере достраивания картинки к ним добавляются более сложные признаки.

К примеру, отдельные группы нейронов зрительной коры возбуждаются, когда мы читаем определенные слова. Эти нейроны принимают импульсы от других нейронов, реагирующих на отдельные буквы. В свою очередь нейрон, реагирующий на появление буквы «Н», испускает импульс, получив сигнал от групп нейронов – детекторов признаков, таких как линии и границы. На нижнем уровне визуального анализа находятся нейроны, которые возбуждаются в ответ на простое наличие участков света и тени. При взгляде на черную линию на белом фоне – например, горизонтальную черточку у буквы «Н» – среагирует цепочка таких нейронов нижнего уровня, однако импульсы, исходящие от них, запустят волну последующих импульсов на пути от попадания света на сетчатку до формирования отвлеченных понятий и мыслей.

Обработка зрительной информации на всех уровнях осуществляется по топографическому принципу, когда смежные области пространства, находящегося в поле зрения, активизируют смежные области зрительной коры. Мозг в этом плане можно уподобить интерактивной карте местности. Начиная с элементарных форм и далее вплоть до сложных стимулов, таких как лица и различные предметы, мозг шаг за шагом выстраивает картину окружающего пространства.

Обследование мозга пациентки Д. Ф. выявило, что обработка зрительной информации на высших уровнях идет по двум направлениям: одно отвечает за восприятие, другое – за действия. Эти направления или потоки представлены кластерами специализированных и тесно связанных друг с другом участков мозга. В них поступает информация от первичных детекторов признаков.

Вентральный (нижний) поток ответствен за распознавание предметов, их формы и цвета. Он прочно связан с областью мозга, отвечающей за память. Где-то ближе к началу вентрального потока находятся так называемые «бабушкины клетки», которые возбуждаются только при виде знакомого лица.

Дорсальный (верхний) поток – это домен действий, он специализируется на информации о положении объектов в пространстве и их движении. Его нейроны реагируют на движение по прямой и по окружности. Другие нейроны этого потока возбуждаются различным образом в ответ на то или иное положение глаз, что помогает мозгу понять, как меняется местоположение тела относительно каких-либо предметов.