Энергия и жизнь - Печуркин Николай Савельевич. Страница 23
В целом широко распространены и поддерживаются симбиозы, связанные с освоением новых источников пищи и энергии, недоступных ранее организму хозяина. Хорошо известны симбиотические микроорганизмы, культивируемые высшими животными, например жвачными или термитами. Это дает возможность использовать клетчатку как источник органического углерода. Симбиозы получаются уже пятого, шестого и последующих уровней кооперации. Используются симбионты и для информационных целей: так, светящиеся бактерии в определенных органах водных хищников хорошо выполняют функцию фонарей, освещающих возможные источники пищи.
Симбиотические ассоциации, перенос генов и удержание чужеродных органелл открывают колоссальные возможности для эволюции и для развития биотического круговорота как в глобальном биосферном варианте, так и в локальных экосистемах, осуществляющих местные круговороты вещества под влиянием потока солнечной энергии. В широком смысле слова можно утверждать, что весь круговорот в целом является (на каждый момент его существования) симбиозом видов, его осуществляющих. Взаимозависимость видов при их коэволюции возрастает. Достаточно напомнить, что человек и некоторые животные не способны синтезировать ряд витаминов и даже более существенных компонентов питания — незаменимых аминокислот. Как мы обсуждали в предыдущих главах, с точки зрения энергетической гораздо более выгодно не синтезировать эти аминокислоты самим хищникам, а «передоверить» это дело жертвам, способным к более быстрому биосинтезу.
8.2. Расцвет многоклеточных организмов
Для дальнейших ступеней развития биотического круговорота, связанных с образованием и повсеместным распространением эукариот, более характерны процессы дифференциации и специализации. На этих этапах эволюции жизнь освоила новые территории, и прежде всего сушу. Она распространялась не только вширь, но и вглубь. Многоклеточные эукариотные организмы стали доставать питательные вещества буквально «из-под земли», перекачивая их с потоками воды высоко вверх, в зону активного фотосинтеза с разветвленной фотопринимающей поверхностью. Удлинялись и разветвлялись трофические цепи, цели питания в гетеротрофной части цикла, заменяя недостаточно эффективные цепи разложения. Возрастал срок жизни биологических структур, но поток энергии, прокачиваемой через них, не только не уменьшался, но и заметно увеличивался. Этому способствовало совершенствование систем адаптации и прогнозирования, т. е. информационных систем (органов передачи и приема информации) , в конечном счете приведшее к возникновению и развитию разума, позволяющего не только адекватно реагировать на изменения окружающей среды, но и активно ее перестраивать.
Итак, мы уже знаем, что уже на уровне прокариот были исчерпаны возможности чисто биохимического совершенствования функционирования живых систем. С развитием эукариот открываются новые возможности ускорения метаболизма через специализацию функций внутри клетки, через развитие специфических органелл (митохондрии, хлоропласты, вакуоли и т. д.). Это объединяется одним сложным термином — «компартментализация», т. е. разделение клетки на отсеки, каждый со своей функцией.
Эукариотная клетка по структуре и по размерам сложнее и больше, чем прокариотная. Увеличение размеров оказалось возможным при накопления кислорода в атмосфере из-за энергетического скачка и в ветви цикла фотосинтеза, т. е. продукции, и в ветви дыхания, т. е. деструкции. Но с ростом размеров клеток все более существенным «узким местом» становятся диффузионные ограничения. Показателем дальнейшего прогресса выступает увеличение скорости диффузии, скорости переноса энергии и метаболитов. Как пишет С. Э. Шноль в книге «Физико-химические основы эволюции» [М., 1979, с. 142], «прогресс теперь можно измерять в сантиметрах в секунду».
Одним из наиболее эффективных путей увеличения потоков может служить относительное изменение поверхностей, через которые осуществляется диффузия. Поэтому изменение геометрии структур организма вместе с дифференциацией функций составляющих его клеток становится предметом действия естественного отбора. И это очевидно. Например, шар, наиболее обычная, но далеко не единственная для прокариот форма, оказывается теперь наименее эффективным, так как отношение его поверхности к объему минимально. Наиболее выгодна с этой точки зрения, нитевидная форма, но усложняются связи между ее концами из-за тех же диффузионных ограничений. По-видимому, плоские и кольцевые поверхности разнообразных проявлений могли удовлетворять большинству диффузионных ограничений. Перспективны также многолучевые структуры с разнообразными выростами. В этом параграфе мы и рассмотрим некоторые этапы морфологической эволюции, приведшей к современной биосфере, соблюдая как всегда принцип постепенности и заботясь о демонстрации энергетических преимуществ, получаемых организмами в эволюционном развитии.
Один из наиболее интересных этапов развития биотического круговорота связан с тем, что жизнь, возникшая в воде, захватила сушу. Первая принципиальная проблема, которую должна была преодолеть жизнь для распространения на сушу, это защита от губительных ультрафиолетовых лучей. Вода, где жизнь развивалась до сих пор, достаточно хорошо поглощала коротковолновое излучение Солнца. С увеличением содержания O2 в атмосфере за счет работы цианобактерий озоновый слой, поглощающий УФ-лучи, становился все более эффективным «щитом» для живых систем. Это позволило интенсифицировать фотосинтез у поверхности воды, на мелководьях, что дало еще более надежный озоновый экран, и т. д. Следовательно, реальные предпосылки использовать сушу появились, прибрежная жизнь стала искать пути ее захвата, перебирая варианты, делая множество попыток, чаще всего неудачных.
В соответствии с принципом постепенности очевидно, что колонизация суши происходила в направлении от берега к наиболее сухим, безводным участкам. Поскольку условия для жизни животных на суше создавались растениями, то мы и рассмотрим вначале развитие растений.
На поверхности практически не освоенной жизнью суши в протерозое в результате взаимодействия абиотических и биотических условий формировалась почва как особое биокосное тело. Биотическая часть создавалась бактериями и синезелеными водорослями. Возможно, имелось что-то типа цианобактериального мата. Существовал и развивался примитивный круговорот, менее эффективный, чем в толще воды. Неэффективность его связана с тем, что фотосинтезирующая пленка на суше очень тонка из-за ограничения подвижности фотосинтетиков (по сравнению с водой). Это же ограничение подвижности мешало снабжению фотосинтеза соответствующими биогенами. Таким образом, и поток солнечной энергии плохо использовался, и слабо включалось вещество в круговорот. Увеличить светоприемную поверхность и достать питательные вещества «из-под земли» могли только крупные многоклеточные организмы.
Каковы же были непосредственные задачи, которые должны были «решить» растения, чтобы завоевать манящую, богатую энергией сушу? Или точнее, чтобы снять налет телеологичности, скажем: какие направления их развития, связанные с умощнением и ускорением вращения вещества под влиянием потока энергии, были поддержаны естественным отбором? Перечислим несколько основных.
1. Увеличение светоприемных поверхностей.
2. Развитие систем всасывания органических веществ из глубины почвы.
3. Обеспечение транспорта необходимых веществ и воды к специализированным системам.
4. Совершенствование прямостояния в условиях гравитации, которой практически не было в воде.
5. Борьба за воду, которая уже не омывает поверхность растения, а интенсивно испаряется с его развитых поверхностей.
Добавим к этим пяти задачам, направленным на интенсификацию процессов биосинтеза, еще несколько, связанных с размножением и сохранением организмов.
6. Повышение устойчивости к экстремальным колебаниям большинства факторов среды: температуры, влажности, ветра и т. д. Их размах гораздо выше, чем в водных условиях.