Яблони на Марсе - Чирков Юрий Георгиевич. Страница 38
Как же тогда, спросит удивленный читатель, союз этих людей привел к едва ли не самому важному из открытий XX века?
А разгадка проста. Дело было в том, что в основе поисков Уотсона и Крика лежали очень простые соображения. Ученые понимали, по какой дорожке им следует идти, каких ориентиров придерживаться. Все это они узнали от их старшего собрата по науке американского физика и химика Лайнуса Полинга.
Нет, Полинг не делился с Уотсоном и Криком никакими секретами, более того, даже был их потенциальным соперником. Просто этот позднее удостоенный сразу двух Нобелевских премий: как выдающийся химик в 1954 году и как известный борец за мир в 1962-м, тогда, в 1951 году, только что разгадал структуру, устройство главного «каркаса» белков. Их основным компонентом стала α-спираль. Но главным, ободряющим, вдохновляющим обстоятельством для Уотсона и Крика стало даже не это, а то, как Полинг этого добился.
Послушаем, что по этому поводу писал в «Двойной спирали» Уотсон:
«Скоро я усвоил, что успех Полинга был делом простого здравого смысла, а не результатом каких-то сложных математических выкладок. В его рассуждениях иногда попадались уравнения, но в большинстве случаев и их можно было заменить словами. Ключом к удаче Лайнуса послужило его доверие к простым законам структурной химии. А-спираль была открыта не простым созерцанием рентгенограмм: главный фокус состоял в том, чтобы задать себе вопрос: а какие же атомы рядом с какими предпочитают сидеть? Основными рабочими инструментами были не бумага и карандаш, а набор молекулярных моделей, похожий на детский конструктор.
Мы (Уотсон и Крик. — Ю. Ч.) не видели никаких препятствий к тому, чтобы не попытаться подобным же образом решить проблему ДНК. Для этого нужно было только сконструировать набор молекулярных моделей и начать играть ими — при известном везении могла получиться и спиральная структура. Любая иная конфигурация оказалась бы куда сложнее. Раздумывать о сложностях, не убедившись в том, что не годится простейший ответ, было бы непростительной глупостью. Если бы Полинг так искал трудностей, он никогда ничего не добился бы».
Революционное для биологии открытие было совершено в невзрачном домике, в комнатке, где едва помещались шкаф и два стола. Все было забито книгами, кристаллографическими моделями да стопками негативов. На них можно было увидеть темные пятна и полосы — это были рентгенограммы молекул ДНК.
Со стороны (могло показаться, что Уотсон и Крик действительно занимаются какой-то детской игрой. Или… разгадыванием объемного кроссворда, в котором на «вертикалях» и «горизонталях» много, очень много незаполненных клеток. Пользуясь вращающимися сочленениями, они соединяли окрашенные в разноцветные тона элементы, изготовленные из дерева, пластика, металла, в сложные сооружения, напоминающие скульптуры абстракционистов.
Надо было только угадать. Угадать, как природа соединила в цепочки четыре основных компонента, которые химики давно уже выделили из ДНК, установив их состав, — четыре азотистых основания: аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). Как связаны они друг с другом двумя «склеивающими» элементами — сахарной и фосфатной группами?
Уотсон и Крик стремились так расположить соединенные проволочками, которые условно означали химические связи, шарики-атомы, все слагаемые модели, чтобы возведенная конструкция соответствовала рентгенограммам ДНК. Их для Уотсона и Крика получал английский физик, он тоже работал в Кембридже, Морис Уилкинс. Уроженец Новой Зеландии, ровесник Крика, специалист по рентгеновской кристаллографии, он во время войны был участникам совместного американо-английского атомного проекта, это занятие, признавался он после, намного снизило его интерес к физике, и он в послевоенные годы переключился на биофизические исследования.
Уотсон и Крик изрядно повозились. Они неустанно вращали отдельные части своей конструкции вокруг осей-проволочек, подгоняя свою «скульптуру» под данные рентгенограмм. И если соответствия не наблюдалось, приходилось разбирать модель и начинать ее сборку заново, уже в ином порядке. И так бессчетное число раз.
И все же конец этих комбинаторных исканий наступил. Однажды Уотсон и Крик обнаружили, что всем требованиям удовлетворяет модель, представляющая собой двойную спираль. Потому так и была названа книга Уотсона. Поиски можно было прекратить. Ученым повезло — они сравнительно быстро попали в точку: трудились, возясь с моделями, всего два года.
Можно было праздновать победу? Почить на лаврах? Все еще нет! И модель в виде двойной спирали, все ее детали были описаны в статье, опубликованной в «Nature», тогда, в далеком 1953 году, представлялись не более чем изящной и смелой до нахальства гипотезой.
В ней все требовало проверки. Двойная спираль? А почему не тройная, четверная?.. Произвольно ли чередуются в спиралях основные элементы — А, Г, Ц и Т? Или, как думали прежде многие, какие-то их комбинации, скажем, АТЦГ служат основными блоками и генетические послания заключены в формулах типа (АТЦГ)n, где n — неизвестные пока целые числа?.. В самом ли деле молекула ДНК закручена в спирали? Если да, то какие они — левые или правые?..
Поистине достойно удивления (недаром всё-таки Уотсона прозвали «счастливчик Джим»!), что фактически с первой попытки, занявшись молекулярным конструированием, Уотсон и Крик (много лет спустя на радостях свой дом в Кембридже Крик назовет Golden Helix — золотая спираль) поразили цель: в яблочко, в десятку! Ибо последующие детальнейшие проверки в основном подтвердили, а не опровергли их представления. Модель выдержала самые строгие экзамены. Среди экзаменаторов был и обойденный в этой научной гонке, главный соперник Уотсона и Крика — Лайнус Полинг. А высшей наградой для Уотсона, Крика и Уилкинса стало присуждение всей троице в 1962 году Нобелевской премии.
Она очень изящна, элегантна, просто очень красива, эта созданная природой за миллионы лет эволюции молекула. С чем ее сравнить? Может, со стройной новогодней елкой, увешанной хлопушками и блестящими шарами (их роль играют повторенные в различных комбинациях основания А, Т, Г и Ц — аденин, тимин, гуанин и цитозин)?
ДНК. В популярных изданиях эти молекулы часто еще сравнивают то с немыслимо длинными товарными поездами, составленными из вагонов четырех типов, помеченных литерами А, Т, Г и Ц, то со зданиями-небоскребами, сложенными из кирпичей четырех сортов. В таких сравнениях подмечено важное обстоятельство. Молекулы ДНК имеют огромную длину. ДНК — крупнейший из известных нам полимеров. Протяженность молекул наследственности в миллиарды раз больше ее толщины.
И еще одна полезная для запоминания «силуэта» ДНК параллель. Если умозрительно раскрутить уотсон-криковскую двойную спираль и уложить ее в плоскости, то эта молекула будет иметь вид веревочной лестницы, причем сахарá и фосфатные группы, превращающие ДНК в полимер, будут связывать узлы лестницы по ее длине, а несущие смысловую, информационную нагрузку основания А, Т, Г и Ц, разбившись на пары, создадут ступени этой воображаемой лестницы.
Цепь ДНК можно разбить на отдельные с особым своим смыслом отрезки. Каждый из них (важнейший итог исследований!) и представляет собой ген, эту элементарную единицу наследственности. Да, ныне принято отождествлять ген с выполняющим определенную функцию, например, синтез одного из нужных живой клетке белков, участком молекулы ДНК. Считается, что средний по размеру ген слагается примерно из 1500 пар нуклеотидов (каждый нуклеотид — совокупность сахара, фосфата и одного из оснований А, Т, Г и Ц).
Так удалось наконец в деталях и подробностях разглядеть то, о чем твердили Мендель, Морган и их последователи. Так были нарисованы портреты прежде почти мистического, абстрактного для классической генетики понятия «ген».