Приспособиться и выжить! - Кэрролл Шон. Страница 3

В красных кровяных клетках (эритроцитах) содержится много молекул гемоглобина, которые связывают кислород в легких или жабрах, а затем высвобождают его в других участках тела в процессе циркуляции крови. Молекула гемоглобина состоит из белка глобина и небольшой молекулы, называемой гемом. Красный цвет крови связан именно с наличием гема, встроенного в гемоглобин и связывающего кислород. Если бы у нас не было эритроцитов, мы бы умерли (и умираем: патологическое состояние, связанное с низким уровнем содержания эритроцитов, называется анемией). Даже у близких родственников ледяных рыб, таких как антарктический каменный окунь и новозеландская масляная рыба, кровь красная.

Обнаружение столь удивительных рыб вызвало множество вопросов. Где, когда и как они появились? Что произошло с их гемоглобином? Как могут эти рыбы обходиться без эритроцитов?

Часто о происхождении вида можно судить по ископаемым останкам, однако подобных источников информации в случае ледяной рыбы и ее родственников не обнаружено. Но даже если бы мы и нашли такие останки, то на их основании мы не смогли бы определить, какого цвета кровь была у этих животных и когда она изменилась. К счастью, у нас есть другой источник информации об истории эволюции ледяной рыбы — ее ДНК.

Ясный и совершенно ошеломляющий ответ на вопрос о том, что случилось с гемоглобином ледяной рыбы, был получен через 40 с лишним лет после того, как Рууд взял образцы их крови. У этих удивительных рыб перестали работать два гена, которые у всех остальных позвоночных кодируют белок глобин. Один из этих двух генов превратился в «молекулярное ископаемое»: он по-прежнему присутствует в ДНК ледяной рыбы, но стал ненужным и частично разрушился, подобно тому как окаменелости рассыпаются под влиянием внешней среды. Второй ген глобина, который в ДНК обычных рыб находится непосредственно рядом с первым, полностью исчез. Таким образом, ледяная рыба навсегда лишилась генов для синтеза молекулы, которая на протяжении 500 млн лет поддерживала жизнь ее предшественников.

Что стало причиной отказа от средства поддержания жизни, которым пользуются все другие позвоночные животные на нашей планете?

Необходимость и возможность, вызванные серьезными и длительными изменениями температуры океана и подводных течений.

Около 55 млн лет назад температура воды в Южном Океане упала от примерно +20 до -1 °C в некоторых районах. Примерно 33–34 млн лет назад в результате движения тектонических плит Антарктида отделилась от южной оконечности Южной Америки и оказалась окружена океаном со всех сторон. Последовавшее за этим изменение морских течений изолировало воды, окружающие Антарктиду, так что они перестали перемешиваться с водами других районов океана. Рыбы вынуждены были либо адаптироваться к подобным переменам, либо вымереть (именно эта судьба постигла большинство видов). В то время как все остальные исчезли, одна группа рыб сумела извлечь выгоду из новых условий обитания. Ледяные рыбы — это небольшое семейство, относящееся к более обширному подотряду нототениевых рыб, который, включает в себя около 200 видов и сегодня доминирует в водах антарктического региона.

Низкая температура воды в Антарктике представляет собой серьезную проблему для функционирования организма. Как масло в моем автомобиле зимой в Висконсине, жидкости организма при температуре замерзания воды становятся очень вязкими, что затрудняет их циркуляцию. Антарктические рыбы вышли из положения, снизив содержание эритроцитов в циркулирующей крови. Гематокрит (доля эритроцитов во всем объеме крови) обычных антарктических рыб составляет от 15 до 18 %, тогда как у нас с вами гематокрит находится на уровне 45 %. Однако у ледяной рыбы этот процесс пошел еще дальше, и эритроциты были удалены из крови полностью, а гены гемоглобина за ненадобностью разрушились под грузом мутаций. Кровь ледяной рыбы настолько разбавлена, что содержит лишь 1 % клеток (исключительно белых клеток крови), так что можно сказать, что в их жилах течет вместо крови ледяная вода! Как же эти существа обходятся без необходимого для жизни гемоглобина?

Теперь понятно, что потеря гемоглобина сопровождалась целой серией изменений, которые позволили ледяной рыбе прекрасно чувствовать себя при отрицательной температуре. Одно из важных различий между теплой и холодной водой заключается в том, что в холодной воде кислород растворяется гораздо лучше, чем в теплой. Ледяные воды океана чрезвычайно богаты кислородом. У ледяной рыбы довольно крупные жабры и кожа без чешуи, но с очень толстыми капиллярами. Эти две особенности повышают ее способность поглощать кислород из воды. Кроме того, у ледяной рыбы более крупное сердце и больше объем крови, чем у ее родственников, обладающих красной кровью.

Сердце ледяной рыбы имеет и еще одну принципиальную особенность — оно зачастую очень бледное. Розовый цвет сердец (и скелетных мышц) позвоночных животных связан с присутствием другой молекулы, содержащей гем и связывающей кислород, которая называется миоглобином. Миоглобин связывает кислород более прочно, чем гемоглобин, и запасает его в мышцах, откуда кислород высвобождается при физической нагрузке. В мышцах китов, тюленей и дельфинов так много миоглобина, что эти мышцы коричневого цвета. Высокое содержание миоглобина позволяет этим животным долгое время находиться под водой. Однако в организме ледяных рыб миоглобин не заменяет гемоглобин. Он, как и гемоглобин, отсутствует в мышцах всех ледяных рыб и в сердцах у пяти их видов (поэтому они такие бледные). У позвоночных животных белок миоглобин кодируется одним-единственным геном. Анализ ДНК ледяных рыб с бледным сердцем показал, что их ген миоглобина мутирован: в него встроено пять дополнительных оснований ДНК, что нарушило код, необходимый для синтеза нормального миоглобина. У этих видов ген миоглобина тоже начал превращаться в ископаемый ген. Изменения в сердечно-сосудистой системе ледяной рыбы позволяют ей получать и доставлять к тканям необходимое количество кислорода без участия двух главных молекулярных переносчиков кислорода.

Жизнь в очень холодной воде потребовала от рыб и других изменений — бесспорные тому свидетельства обнаружены на многих участках их генома. Чтобы приспособиться к жизни в холоде, должны измениться даже основные внутриклеточные структуры. Например, основной каркас, или «скелет», клеток образован микротрубочками. Эти структуры участвуют в делении и перемещении клеток, а также определяют их форму. Белки, образующие микротрубочки, выполняют в клетках так много важных функций, что почти без изменений сохранились не только у всех позвоночных, но у всех эукариот (к которым среди прочих организмов относятся животные, растения и грибы). При температуре ниже 0 °C микротрубочки в клетках млекопитающих становятся нестабильными. Если бы это происходило у антарктических рыб, они бы давно вымерли. Но у них, напротив, микротрубочки собираются в стабильные структуры как раз при отрицательной температуре. Это замечательное свойство микротрубочек связано с серией изменений в генах, кодирующих компоненты микротрубочек, и эти изменения произошли лишь у рыб, обитающих в холодной воде (не только у ледяных, но и у их родственников, обладающих красной кровью).

Изменения произошли и во многих других генах, что позволило всем физиологическим процессам протекать при отрицательной температуре. Однако адаптация к холоду не ограничилась модификацией одних генов и исчезновением других; потребовались и некоторые нововведения. Прежде всего следует рассказать о появлении «белков-антифризов». В плазме антарктических рыб очень много этих необычных белков, которые помогают рыбам жить в ледяной воде, снижая пороговое значение температуры образования ледяных кристаллов. Не будь этих белков, рыба полностью заморозилась бы. Структура у них очень необычная и очень простая. Они состоят из последовательностей всего трех аминокислот, которые повторяются от 4 до 55 раз, тогда как большинство белков построены из 20 типов аминокислотных остатков. У обитателей теплых морей нет похожих белков, и это означает, что «белки-антифризы» в какой-то момент были «изобретены» антарктическими рыбами. Как же они возникли?