Растения и чистота природной среды - Артамонов Вадим Иванович. Страница 16
В связи с этим наряду с технологическими способами борьбы с загрязненностью атмосферы и гидросферы должен шире применяться биологический метод. Растения призваны дополнять технологические способы борьбы с запыленностью и задымленностью атмосферы, осуществлять доочистку сточных вод.
Способность растений очищать атмосферу от вредных примесей определяется прежде всего тем, насколько интенсивно они их поглощают. Исследования показали, например, что наибольшей газопоглотительной способностью обладают снежноягодник и карагана древовидная, минимальной — липа войлочная и клен серебристый. Предполагают, что низкая газопоглотительная способность указанных растений связана с опушенностью их листьев.
Таким образом, опушенность растений, с одной стороны, способствует удалению из атмосферы пыли, а с другой — тормозит поглощение газов. В связи с этим для озеленения городов, территорий предприятий целесообразно отбирать породы как с опушенными, так и неопушенными листьями. Одни из них будут очищать воздух от пыли, другие — от вредных газов.
При изучении газопоглотительной способности листьев необходимо различать понятия интенсивности и емкости газопоглощения. Под интенсивностью газопоглощения понимают количество газа, поглощенное растением в единицу времени. Емкость газопоглощения — это количество газа, которое растение поглощает за весь период вегетации.
В некоторых случаях в листьях растений обнаруживается невысокая концентрация того или иного фитотоксиканта. Это может быть связано не с низкой интенсивностью газопоглощения, а с более быстрой его ассимиляцией и с оттоком ассимилятов в другие органы.
Растения осуществляют детоксикацию вредных веществ различными способами. Некоторые из них связываются цитоплазмой растительных клеток и становятся благодаря этому неактивными. Другие подвергаются превращениям в растениях до нетоксических продуктов, которые иногда включаются в метаболизм растительных клеток и используются для нужд растений. Обнаружено также, что корневые системы растений выделяют некоторые вредные вещества, поглощенные надземной частью растений, например серосодержащие соединения.
Различные биоценозы играют неодинаковую роль в очистке атмосферы от вредных примесей. Один гектар леса производит газообмен в 3—10 раз более интенсивно, чем полевые культуры, занимающие аналогичную площадь.
Высокая эффективность леса в очистке окружающей среды от вредных примесей связана отчасти с рассеиванием ядовитых газов в воздухе, поскольку в лесу течение воздуха поверх неровных древесных крон способствует изменению характера потоков в самой нижней части атмосферы.
Древесные насаждения увеличивают турбулентность воздуха, создают усиленное смещение воздушных течений, в результате чего загрязнители более быстро рассеиваются (Молчанов, 1973).
В атмосфере и гидросфере Земли содержится 1,5∙1015 т кислорода. Содержащийся в воздухе и воде кислород является результатом деятельности автотрофных организмов, осуществлявшейся на протяжении длительного периода истории Земли. Появление на Земле кислорода явилось мощным стимулом эволюции живых организмов, поскольку они получили возможность осуществлять свои многообразные физиологические функции благодаря использованию энергии, выделяющейся в большом количестве при аэробной диссимиляции органических веществ.
Кислород, образуемый в ходе фотосинтеза современной растительностью, используется на дыхание самих растений (около 1/3), на аэробное разложение органических веществ микроорганизмами, на дыхание животных и человека, а также на процессы горения различных веществ. Осуществление всех этих процессов приводит к тому, что почти весь кислород, выделяемый наземной растительностью, расходуется и накопления его в атмосфере почти не происходит. К тому же суммарная годовая продукция кислорода лесов составляет, по подсчетам специалистов, ничтожно малую величину по отношению к общему запасу его в атмосфере Земли, а именно около 1/22000. Таким образом, вклад наземных экосистем в баланс кислорода на нашей планете весьма незначителен. Возмещение кислорода, расходуемого на процессы горения, происходит главным образом за счет фотосинтеза фитопланктона. Дело в том, что в достаточно глубоких водоемах отмершие организмы опускаются на такую глубину, где их разложение осуществляется анаэробным путем, т. е. без поглощения кислорода.
Гидросфера оказывает влияние на баланс газов в атмосфере еще и потому, что в ней иное соотношение между азотом и кислородом. Если в атмосфере соотношение между ними равно четырем, то в водоемах относительная доля кислорода примерно в два раза выше, чем в атмосфере. Однако именно со стороны гидросферы нас и поджидает, пожалуй, наибольшая опасность. Дело в том, что в настоящее время моря и океаны все более и более загрязняются. По образному выражению Б. Уорд и Р. Дюбо (1975), океаны — это всеобщая сточная яма нашей планеты, гигантский септический бак. Человек находится под влиянием средневековых представлений о безграничности Мирового океана. Однако это далеко не так. Мировой океан представляет наиболее уязвимую часть биосферы. Интенсивный сброс в моря и океаны загрязняющих веществ создает угрозу возникновения в них анаэробных условий. Так, например, по сравнению с 1900 г. резко сократилось содержание кислорода в Ландсортской впадине Балтийского моря. В настоящее время кислород там практически отсутствует.
Что касается атмосферы, то в ней, как показывают систематические наблюдения за концентрацией кислорода, проводимые с 1910 г., содержание этого газа практически не изменилось и равно 20,9488±0,0017. Это отнюдь не означает, что нам не следует заботиться о сохранении растительного покрова Земли. Темпы использования кислорода резко возросли. По данным И. М. Кутырина (1980), за последние 50 лет было использовано кислорода в процентном отношении столько же, сколько за последний миллион лет, т. е. примерно 0,02 % атмосферного запаса. Человечеству в ближайшем будущем не будет реально угрожать кислородное голодание. Тем не менее для сохранения стабильности газового состава атмосферы предстоит искать новые виды энергий, не требующие расхода кислорода, шире использовать водную, ветровую, ядерную и другие виды энергий.
Одно из важнейших значений зеленых растений заключается в том, что они осуществляют процесс утилизации углекислого газа. О масштабах этого процесса свидетельствует тот факт, что за год растения связывают в форме органических веществ около 6–7 % углекислого газа, содержащегося в атмосфере Земли. Приблизительно около трети количества образованного в ходе фотосинтеза органического вещества, расходуется самими растениями при дыхании, что приводит к высвобождению углекислого газа. Очень незначительная доля органических веществ (около 1/1000) консервируется (например, в виде торфа), а остальное количество их становится достоянием гетеротрофных организмов: микробов, животных, человека. В результате осуществления ими процессов дыхания, брожения и гниения органические вещества распадаются с выделением углекислого газа. Кроме того, углекислый газ высвобождается при горении древесины, газа, нефти, каменного угля и других горючих материалов, при извержении вулканов.
Подсчитано, что в атмосфере Земли имеется 2,3∙1012 т углекислого газа. Атмосфера постоянно обменивается газами с гидросферой. А та содержит в 60 раз больше углекислоты, чем атмосфера. Двуокись углерода атмосферы имеет очень важное значение. Она участвует в регуляции кислотности морей и океанов: при растворении в воде углекислый газ образует угольную кислоту, в результате диссоциации которой возникает карбонатбикарбонатная буферная система.
Моря и океаны действуют подобно насосу, перекачивающему углекислый газ из полярных широт в экваториальные. Происходит это следующим образом. Газы, как известно, лучше растворяются в холодной воде, чем в теплой. По этой причине углекислый газ интенсивно поглощается в холодных областях. При помощи глубинных течений он перемещается в теплые тропические области. Здесь двуокись углерода мигрирует в атмосферу. В связи с этим парциальное давление ее в атмосфере тропиков несколько выше, чем в высоких широтах.