Виролюция. Важнейшая книга об эволюции после «Эгоистичного гена» Ричарда Докинза - Райан Фрэнк. Страница 53

Уже в то время были если не прямые, то косвенные свидетельства в пользу того, что бактерии с абсолютно одинаковым геномом могут выглядеть по-разному и различно вести себя. Поскольку бактерии едва ли меняют геном в течение жизни, разница подразумевает действие эпигенетического механизма. Более того, эти эпигенетически произведенные изменения воспроизводятся при делении клеток и повторяются бесконечно — другими словами, эпигенетические изменения закрепляются и воспроизводятся при бактериальном эквиваленте митоза, дающего начало клеткам, формирующим наши органы и ткани.

Учитывая степень лихорадочного оживления, последовавшего за открытием ДНК, не удивительно, что сменилось поколение, а то и два перед тем, как биологи осознали: все удивительные действия и свойства «кода жизни» и связанной с ним молекулярной химии недостаточны. Факт остается фактом: разницу между клетками печени, сердца, мозга нельзя объяснить исключительно действием генов либо управляющих генетических последовательностей, либо даже изумительно точных и отлаженных генетических сигнальных последовательностей, контролирующих процессы включения и работы генов. Слова Нэнни оказались пророческими. В клетке есть некий механизм, управляющий самими генами, и, вероятно, этот же механизм регулирует генную управляющую и сигнальную системы.

Спустя три года после публикации новаторской работы Нэнни английский биолог Мэри Ф. Лайон предположила, что у самок млекопитающих одна из Х-хромосом должна быть деактивирована на ранней стадии эмбрионального развития. Здесь уже неоднократно писалось о том, что у самок — две Х-хромосомы, а у самцов лишь одна. Это значит, что, если у самок будут задействованы обе хромосомы, геном самок при развитии будет задействован принципиально иным образом, чем геном самцов. Лайон, окончившую Кембриджский университет, Уоддингтон зазвал работать в Институте генетики в Эдинбурге. Именно там, изучая генетику мышей, Лайон предположила: деактивация второй Х-хромосомы у самок важна при эмбриогенезе, поскольку гарантирует, что и мужские, и женские эмбрионы будут подвергаться действиям одной и той же «дозы» Х-хромосомных генов [142]. Предсказание Лайон должным образом подтвердилось: у женских эмбрионов отключение в самом деле происходит на шестнадцатый день эмбриогенеза и служит важным стабилизирующим механизмом развития эмбриона.

Мы с вами уже сделали два очень существенных шага в сторону понимания современной эпигенетики, но остается главный вопрос: каким образом эпигенетический механизм действует? Как это часто случается в биологии, ответ подсказали микробы, в чьем поведении ученые заметили необычные черты.

В бактериях действует особый специализированный химический инструмент, на биологическом жаргоне называемый «ограничивающим энзимом». Он рвет ДНК на куски. Эти химические «секиры» реагируют на последовательности ДНК, модифицированные добавлением небольшого радикала метила. Метил — это одновалентный радикал простейшей органической молекулы, состоящий из единственного атома углерода, присоединенного к трем атомам водорода. Поскольку углерод имеет валентность четыре, у метиловой группы остается свободная связь, и посредством ее этот радикал может присоединяться к атомам и молекулам (обозначается он так: — СН3). Генетики обнаружили удивительный факт: метилированную ДНК химические «секиры» не трогают, но если ДНК не метилирована, «секиры» рубят ее на части. У бактерий это служит защитой от вирусов — ДНК вторгающихся вирусов не метилированы. Потому бактерия может распознать чуждость вторгшейся ДНК, и «секиры» тут же исполняют защитную функцию, уничтожая агрессора. Потому исследователи предположили: метилирование ДНК сделает ее невидимым для мощных химических анализаторов клетки.

В год смерти Уоддингтона (1975) Робин Холлидей, глава Отделения генетики Национального института медицинских исследований в Лондоне, вместе со своим аспирантом Джоном Е. Пью сделал еще один принципиальный шаг к пониманию эпигенетического механизма. По их мнению, присоединение метиловой группы к одной из четырех кодирующих «букв» ДНК, нуклеотиду цитозину, по всей длине гена либо управляющей последовательности может играть важную роль в регулировке действия этого гена. А от этого всего шаг до осознания того, что подобное регулирование может определять судьбу клеток в процессе нормального развития эмбриона [143]. Ныне известно, что процесс, названный «цитозиновой метиляцией», — один из главнейший эпигенетических механизмов, решающих судьбу каждой отдельной клетки при развитии эмбриона. Он продолжает играть фундаментальную роль в управлении клетками каждой ткани и органа на протяжении всей жизни взрослого человека.

Теперь самое время повторить вопрос Уоддингтона: как же возникают очень разные клетки, формирующие наши органы и ткани? В статье, написанной совместно с Пью, Холлидей дал ответ на него. Эпигенетические процессы включают и выключают определенные гены в различных клетках. Именно такое управление экспрессией генов, в особенности «генов развития», определяющих ключевые стадии развития эмбриона, приводит к тому, частью чего станет клетка — кожи, печени, глаза или мозга.

В 2009 году я связался с Холлидеем, в то время жившим в Австралии, чтобы поговорить о его открытии. Я поинтересовался, что же особенного в метиле и его связи с ДНК?

— В метиле всего четыре атома — очень простая группа. Ее присоединение не мешает химической активности цитозина, то есть связи цитозина с гуанином. В 1975 году мы уже знали: в ДНК присутствует метилированный цитозин. Правда, мы не знали, зачем он там и какие функции несет, хотя, конечно, ожидали, что он вовлечен во что-то важное. А теперь уже знаем: он — маркер, сигнал, который могут распознать протеины (такие, как факторы транскрипции), участвующие в процессе экспрессии генов.

Упоминаемые Холлидеем факторы транскрипции — это связывающиеся с ДНК управляющие структуры, определяющие, какой ген включить, а какой выключить и в какое время это должно произойти в течение эмбриогенеза. Если цитозины в какой-либо фазе транскрипции метилированы, ген отключается. Если цитозины деметилированы, ген включается. Холлидей и Пью предложили также оригинальную модель того, как сами метиловые группы могут быть присоединены к генетическим последовательностям либо удалены, причем безо всяких изменений в последовательности ДНК.

Год 1975-й оказался в особенности важным для развития эпигенетики. Одновременно с Холлидеем и Пью, но независимо от них работающий в Медицинском центре «Город надежды» Артур Д. Риггс предложил объяснение механизма отключения Х-хромосомы посредством ее метилирования [144]. А чуть позже еще двое американских биологов, Руфь Сагар и Роберт Китчин, согласившись с Холлидеем и Пью, предположили, что могут существовать и другие механизмы эпигенетического управления [145].

Забавно, но в статьях, увидевших свет в 1975 году, исследователи, столь продвинувшие эпигенетику, термина «эпигенетика» не употребляли ни в заглавии, ни в тексте. Об этом поведал сам Холлидей в очень важной своей статье, опубликованной в 1987 году в «Сайнс». Статья называлась «Наследование эпигенетических дефектов»; в ней рассказывалось о наследовании эпигенетических механизмов контроля от родительской клетки к дочерней [146].

Открытия вызвали новые вопросы. Как присоединяются и отсоединяются метиловые группы? Если, как сейчас полагают почти все, метилирование — не единственный эпигенетический механизм, какие еще козыри у эпигенетики в рукаве? И важнейший вопрос: способны ли эпигенетические механизмы изменить наследственность живого существа? При положительном ответе на него биологи должны согласиться с наличием еще одной движущей силы эволюции.