Путешествие в страну микробов - Бетина Владимир. Страница 71

Путешествие в страну микробов - n_52.png

Резистентность стафилококков к пяти антибиотикам

Нечто подобное мы уже описывали в 12-й главе, когда рассказывали об образовании ферментов, необходимых для использования лактозы. С 1969 года нам известна и химическая структура пенициллиназы, вырабатываемой стафилококками. В построении ее молекулы участвуют 257 структурных единиц двадцати аминокислот, соединенных в различной последовательности. Другие бактерии образуют ферменты, которые разрывают связь между основным ядром молекулы бензилпенициллина и ее боковой цепочкой, в результате чего молекула распадается на две части.

Путешествие в страну микробов - n_53.png

Действие микробных ферментов на молекулу пенициллина. Пенициллиназа раскрывает β-лактамное кольцо, вследствие чего пенициллин теряет дееспособность. Ацилаза отщепляет боковую цепочку молекулы, оставляя лишь 6-аминопенициллановую кислоту. Из нее и получают в настоящее время полусинтетические пенициллины.

Трудно сказать, имеет ли это расщепление молекулы пенициллина защитный характер, поскольку одна из полученных частей не совсем безвредна для бактерии.

Ученые используют это расщепление молекулы в собственных целях: изменяют молекулу пенициллина таким образом, чтобы пенициллиназа не смогла подвергнуть ее гидролизу. Отделяя боковую цепочку молекулы от ее ядра, получают так называемую 6-аминопенициллановую кислоту. Это вещество само по себе является слабым антибиотиком, но, поскольку оно образовалось за счет потери боковой цепочки бензилпенициллина, есть возможность путем обратного синтеза получить пенициллины с другими боковыми цепочками, в том числе и такие, которые противостоят действию пенициллиназы.

Путешествие в страну микробов - n_54.png

Схема получения 6-аминопенициллановой кислоты и структура наиболее известных полусинтетических пенициллинов.

Это открытие было сделано группой английских исследователей, работавших в сотрудничестве с Чейном. Они присоединили к 6-аминопенициллановой кислоте вместо радикала бензила группу диметоксибензила и таким образом получили новый пенициллин, отлично противостоящий действию пенициллиназы. Этот первый полусинтетический пенициллин известен в медицине под названием метициллина. Его применяют против стафилококков, резистентных к бензилпенициллину.

К ядру молекулы пенициллина можно присоединять и многие другие боковые группы. Таким путем был получен препарат оксациллин, успешно заменивший своего предшественника. Оксациллин можно принимать в таблетках, тогда как метициллин вводится в организм исключительно путем инъекции. Первые сообщения о новых пенициллинах появились на страницах научных журналов в 1959 году, а через несколько лет фирмы, вырабатывающие антибиотики, буквально наводнили печать сведениями о сотнях новых препаратов, лучшие из которых появились в продаже. Среди них стоит упомянуть хотя бы один — ампициллин. Этот препарат, также лишь незначительно отличающийся строением своей боковой группы от бензилпенициллина, обладает существенно новым свойством — он эффективен против грамотрицательных бактерий,

Сейчас имеются уже многие производные ампициллина, также действующие на грамотрицательные бактерии. Хотелось бы привести хотя бы один пример их использования. Когда в 1967 году чехословацкий самолет потерпел аварию в Канаде, четыре пассажира с тяжелыми ожогами оказались зараженными бактериями Pseudomonas aeruginosa. Против инфекции были бессильны девять различных антибиотиков, среди них и три новых пенициллина. Потерпевших вылечили карбенициллином.

Инфекционная резистентность

Резистентность, или устойчивость, к антибиотикам — явление наследственное. Из устойчивой клетки стафилококка возникает устойчивое к ним потомство. В 1959 году была открыта особая форма резистентности, передаваемая другим микроорганизмам и как бы «заражавшая» их.

Выяснилось, что некоторые бактерии обладают способностью чрезвычайно быстро передавать устойчивость к антибиотикам нерезистентным бактериям, причем иногда даже принадлежащим к совсем иному виду. Японские микробиологи К. Т. Осяи и Т. Акиба, открывшие этот новый тип устойчивости, назвали ее инфекционной резистентностью. Они выращивали резистентную форму возбудителя дизентерии в одной и той же жидкой питательной среде с чувствительной к антибиотикам культурой Escherichia coli. Большая часть клеток последней стала также резистентной. Таким же образом устойчивая Е. coli повлияла на чувствительные бактерии дизентерии, превратив их в резистентные. Казалось, что чувствительный организм был как бы «заражен» генетическим материалом, контролирующим резистентность к антибиотикам, и перенял это свойство.

Теперь мы уже знаем, что этот «инфекционный» перенос резистентности на чувствительные бактериальные клетки и на их потомство совершается при помощи конъюгации и трансдукции. Конъюгация возможна и между бактериями, принадлежащими к разным видам. Японские микробиологи доказали, что свойство устойчивости «записано» в автономных генетических элементах, присутствующих в клетках наряду с хромосомами и называющихся эписомами. Как и для хромосом, носителем этой генетической «записи» является ДНК. Эписомы образуются в клетках независимо от хромосом и, как правило, быстрее последних. Кроме того, они могут перемещаться из одной клетки в другую. Эписомы, определяющие устойчивость к антибиотикам, называются факторами Rtf (факторами, детерминирующими перенос устойчивости). Они могут переноситься по типу конъюгации или трансдукции в чувствительные клетки, превращая их в резистентные. Инфекционная резистентность распространяется особенно интенсивно среди кишечных бактерий, к которым относятся возбудители дизентерии (Shigella dysentenae), брюшного тифа (Salmonella typhi) и другие бактерии. Существование инфекционной резистентности приводит к нежелательным для человека последствиям. Устойчивость к антибиотикам у микробов может распространяться не только в организме одного больного, но и передаваться от больного к больному.

Интересно, что факторы Rtf могут передавать устойчивость одновременно к нескольким лекарственным средствам. Часто один и тот же микроорганизм устойчив и к сульфаниламидам, и к хлорамфениколу, и к стрептомицину, и к тетра-циклинам.

Резистентные кишечные бактерии продуцируют ферменты, при помощи которых обезвреживают антибиотики. Например, они могут обезвредить пенициллин, хлорамфеникол, стрептомицин и канамицин. Поистине пророческими оказались слова Левенгука: «Сколько чудес таят в себе эти крохотные создания!»

Оборотная сторона медали

Устойчивость, и в частности инфекционная резистентность, конечно, является для микробов очень выгодным свойством. Особенно это касается инфекционной резистентности, при которой большое количество бактерий может быстро обеспечить себе более или менее постоянную устойчивость к антибиотикам и хи-миотерапевтическим средствам. Но следует заметить, что устойчивости, переносимой эписомами, бактерии могут сравнительно скоро лишиться. Кроме того, некоторыми соединениями можно уничтожить эписомы бактерий. Это невыгодное для бактерий обстоятельство исследователи еще не научились использовать, поскольку не найдены химические средства, лишающие бактерий их эписом непосредственно в организме человека, чтобы потом уничтожить бактерии антибиотиками. Недавно появилось сообщение о том, что антибиотик клиндамицин препятствует переносу фактора Rtf на чувствительные бактерии. Однако результаты, полученные в лабораторных условиях, не всегда идентичны тем, которые наблюдаются в природе.