Рассказы о биоэнергетике - Скулачев Владимир Петрович. Страница 7

Давайте проведем теперь такой опыт. Разворошим соломенную заглушку у входа в нору. Если в степи мороз, то холод быстро проникнет внутрь норы. И что же хомяк? Замерзнет? Ведь просыпаться ему еще рано, до весны далеко!

Не беспокойтесь, ничего страшного не произойдет. Хомяк вскоре пробудится от холода, как просыпаемся и мы с вами, если мороз заползет в спальный мешок. Проснется, заделает как следует вход и заляжет снова досматривать многосерийный сон про жаркое лето...

— Все это, конечно, забавно, но при чем тут биоэнергетика? — спросите вы.

А дело было так.

Снижение температуры в норе немедленно зарегистрировали холодовые рецепторы кожи, которые бодрствуют даже при зимней спячке, когда все прочие органы чувств отключены. Нервы доставили сигнал бедствия по точному адресу — в мозг, в терморегуляторный центр гипоталамуса. Оттуда, из центра, понеслись ответные сигналы — приказы органам и тканям. Но как их выполнить, ведь температура органов слишком низка, чтобы ответить активными действиями на пришедший приказ?

Есть ткань, способная к самосогреванию, — это бурый жир. В ответ на сигнал из гипоталамуса нервные окончания в буром жире начали выделять гормон, норадреналин. Он был заготовлен впрок в специальных пузырьках, которыми нафаршированы нервные окончания. Вся нехитрая задача на этом этапе, чтобы пузырьки полопались. Ломать - не строить, и вот уже содержимое пузырьков выплеснулось в узкую щель между мембраной нервного окончания и клеткой бурого жира,

На поверхности клетки 6ypprq жира особые белки (рецепторы) связали норадреналин. Белки эти, пронизывающие насквозь внешнюю мембрану клетки, активировали внутри клетки фермент аденилатциклазу, та сделала из АТФ циклический АМФ — особое вещество — регулятор ферментов, а этот последний присоединился к ферменту протеинкиназе. Протеинкиназа фосфорилировала следующий фермент — липазу. В результате липаза перешла в активное состояние и расщепила жир на глицерин и жирные кислоты.

Жирные кислоты — наиболее калорийное топливо для митохондрий и одновременно активатор для особого белка, переключающего дыхание на холостой ход. Активировалось холостое дыхание митохондрий, повысилась температура ткани.

С повышением температуры быстрее заработали дыхательные ферменты, значит, увеличилось образование тепла. Налицо автокатализ. За топливом (жирными кислотами) дело не стало. Ведь в клетках бурого жира, кроме митохондрий, есть еще и жировые кайли (на то он и жир!).

Разогрелся бурый жир, повысилась температура крови в сосудах, окруженных бурым жиром, теплая кровь поступила в мозг, а затем и в другие органы. Температура тела поднялась, зверек проснулся!

Вы спросите, зачем такая сложная, многоступенчатая система сигналов? Так ведь это же каскад усиления! Одна молекула гормона активирует одну молекулу аденилатциклазы, которая производит уже не одну, а множество молекул циклического АМФ. Каждая молекула циклического АМФ может активировать одну молекулу протеинкиназы, которая, в свою очередь, фосфорилирует множество липаз, и т. д. А на выходе повышение температуры, которое активирует все без исключения звенья каскада. Ответ такой системы на воздействие нарастает лавинообразно. Ну как тут хомяку не проснуться?

Образование тепла бурым жиром лишь частный случай из удивительной области регуляции биохимических процессов. О каждом из таких механизмов можно написать отдельную книгу. Однако наш главный интерес лежит сейчас в иной плоскости. Рассказ о хомяке и буром жире я здесь привел главным образом для того, чтобы показать существование специального биологического устройства, переводящего дыхание на холостой ход.

Итак, дыхание может быть отключено от фосфорилирования. Этого можно достичь искусственно, добавив динитрофенол или какое-либо другое вещество-разобщитель. Подобный эффект возникает и естественным путем в живом организме при воздействии холода. Таков феномен терморегуляторного разобщения окисления и фосфорилирования, открытый сначала в мышцах, а затем в ткани бурого жира.

Стало быть, окисление без фосфорилирования не артефакт, а реально существующий биохимический процесс. Именно этим свойством: способностью разобщать механизм освобождения энергии от механизма ее последующего накопления дыхание отличается от гликолиз — процесса, который наряду с дыханием призван обеспечивать клетку необходимой энергией.

В предыдущей главе мы уже говорили, что синтез АТФ, сопряженный с дыханием, первоначально пытались уподобить описанной ранее реакции образования АТФ при гликолизе. Это был в общем-то естественный этап познания, когда неизвестное явление стремятся свести к комбинации уже известных фактов. Однако гликолиз — процесс, неразрывно связанный с фосфорилированием. Поэтому никакие аналогии с гликолизом не в состоянии помочь нам разобраться в механизме термо-регуляторного разобщения дыхания и фосфорилирования.

Так как же должно быть устроено сопряжение двух процессов, чтобы была возможность их разобщения? Я вновь и вновь задавал себе этот вопрос и не находил разумного ответа.

Глава 5. Крепкий орешек

Жертва «закона Паркинсона»

В 1961 году на Всемирном биохимическом конгрессе в Москве выступал с пленарной лекцией американец Д. Грин. Я слушал доклад со всевозрастающим волнением. Казалось, еще шаг, и группа Грина в Мэдисоне решит проблему превращения энергии при дыхании и фотосинтезе.

— Эту работу мы закончим к следующему конгрессу, — пообещал докладчик.

Можно ли сомневаться в его успехе?

Профессор Грин — блестящий специалист по окислительным ферментам. Ферментные комплексы, названные его именем, — излюбленный объект биоэнергетиков. Грин возглавляет институт энзимологии в университете штата Висконсин, славящийся своим сказочно дорогим оборудованием и неправдоподобными масштабами работы. Там рядами стоят десятки ультрацентрифуг, там за один день перерабатывают сотни килограммов бычьих сердец, за которыми будто бы посылают на чикагские бойни специальный самолет!

Прошло три года. Вновь конгресс биохимиков. Председательствующий Э. Слейтер дает Дж. Уэбстеру слово для внеочередного сообщения чрезвычайной важности. Уэбстер — правая рука Грина. Должно быть, Грин выполнил свое обещание? Так и есть: Уэбстер сообщает об успехе решающего эксперимента.

Это торжество Грина и, казалось бы, хороший повод для других биоэнергетиков сменить тему. Но стоит ли спешить, особенно если вы, подобно Э. Ракеру из Корнелльского университета, что в Итаке, посвятили биоэнергетике не один год жизни?

Ракер решает повторить опыты Уэбстера и сразу же, в самом начале работы, обнаруживает несоответствие: один из белков в Итаке движется на электрофореграмме не так, как в Мэдисоне. Ракер звонит Грину, чтобы поделиться своими сомнениями. Тот и слушать не хочет: какие там еще несоответствия?

— Мой Уэбстер прав, и точка!

Ракер задет за живое: своим глазам он верит больше, чем всей армии гриновских сотрудников.

И вот Ракер в Мэдисоне. Грин продолжает упорствовать. Ракер просит показать ему электрофореграмму. Грин посылает за Уэбстером. Тот появляется и, узнав о причине вызова к шефу, уходит в соседнее здание за протоколами опытов... Уходит и не возвращается. Более того, профессор Уэбстер исчезает! Его не могут разыскать ни в лаборатории, ни дома, ни у коллег по институту.

Грин в замешательстве. В конце концов и без помощи Уэбстера он находит протоколы и шаг за шагом проверяет результаты опытов. И тут всплывает чудовищный факт: в решающем измерении радиоактивности, когда определялось включение меченого фосфата в органическую фракцию, налицо явный разброс данных. При этом в опытных пробах (где ожидали включение фосфата) дальнейший расчет ведется по максимальным величинам, а в контроле (где такого включения быть не должно) по минимальным. Разность тех и других величин записывается в итог опыта и преподносится как его окончательный результат.