Электричество в жизни рыб - Лаздин Александр Владимирович. Страница 3
Каким же образом происходит «ретрансляция» сигналов в нервном волокне? В невозбужденном участке нерва его аксоплазма заряжена отрицательно и находится по отношению к наружному раствору, омывающему нерв, под «потенциалом покоя» (50—70 мВ).
В момент возникновения импульса катионы натрия (или его заменителя) в участках нерва, не покрытых миэлином (в перехватах Ранвье), проникают внутрь нерва через мембрану, так как ее электрическое сопротивление уменьшается почти в 100 раз. В результате заряд аксоплазмы становится положительным и между внутренней и внешней сторонами мембраны возникает электрический ток.
Распространяясь по нерву, электрический процесс постепенно затухает. Одновременно с ним ослабевает и электрический импульс, но, дойдя до следующего перехвата Ранвье, он возбуждает соседний участок нерва, и все повторяется вновь. Таким образом электрические импульсы распространяются по нерву со скоростью 60—120 м/с; частота следования достигает 1000 импульсов в 1 с, а длительность — 0,001 с.
Биологическое электричество служит для координации сложных внутренних процессов жизнедеятельности Но огромное количество разнообразных организмов обитает в воде — среде, имеющей сравнительно высокую электропроводимость. В связи с этим некоторые из них в процессе эволюции приобрели способность генерировать электричество для осуществления различных внешних актов своего существования.
О большой роли электричества в жизни водных организмов свидетельствует их способность ориентироваться в слабых электрических полях. Ею обладают простейшие, некоторые моллюски (например, речная улитка), ракообразные и черви. Но совершенства в этом отношении достигли рыбы. Известный английский нейрокибернетик Г. Уолтер так характеризует эту особенность: «Несколько сот видов рыб генерируют токи, намного превышающие их „бытовые“ потребности. Один из видов генерирует ток напряжением до 600 В. Разряд такого напряжения достаточен, чтобы убить человека или зверя Их мышечные клетки соединены последовательно и параллельно, подобно пластинам Вольтова столба. Но как используется такая „силовая станция“, остается тайной. Возможно, такое устройство служит для защиты. Некоторые виды используют его при движении в мутной воде; другие — „телеграфисты глубин“ — для взаимосвязи В любом случае электропитание в сотни вольт кажется экстравагантным. Мозг человека для всей своей сложной деятельности нуждается в генерации лишь одной десятой вольта» [3].
Механизм генерации электрического тока в разных клетках и тканях организма одинаков. Некоторые различия, проявляющиеся как в скорости распространения импульсов, так и в величине потенциалов, связаны со специфическими особенностями клеток Например, потенциал действующей отдельной электрической клетки электрического угря составляет 120—150 мВ, клетки сердечной мышцы лягушки — 120, клетки портняжной мышцы — 110, мотонейрона спинного мозга кошки — 90 мВ. Следовательно, потенциал клеток электрического органа ненамного превышает потенциалы других клеток Разряды высокого напряжения в электрических органах рыб возникают поэтому в результате суммирования потенциалов отдельных электрических клеток.
Специализированные электрогенераторные клетки электрических рыб произошли из мышечных (у большинства видов), нервных (у некоторых электрических угрей) или железистых (у электрического сома) клеток. Толщина их очень мала, поэтому такие клетки называют электрическими пластинками (Типичная электрическая клетка представляет собой видоизмененную мышечную двигательную пластинку ) На гистологических срезах электрических органов электрических скатов отчетливо видна полосатая исчерченность, характерная для мышечной ткани.
Электрическая пластинка покрыта оболочкой — электролеммой. У разных видов рыб пластинки весьма разнообразны по форме: у электрического сома, например, они напоминают розетки, у скатов — чаши. Их характерный признак — сравнительно большая площадь поверхности при незначительной толщине.
К одной из сторон электрической пластинки обычно подходит множество нервных окончаний. Эта сторона называется лицевой и является мембраной клетки; она управляет распределением ионов натрия, калия, кальция и хлора. К другой стороне пластинки, в которой рассеяны ее многочисленные ядра, подходят кровеносные сосуды. Хотя у некоторых электрических рыб типы иннервации несколько отличаются, все они предназначены прежде всего для согласования разрядов отдельных пластинок.
Механизм возникновения потенциалов в электрических пластинках рыб в принципе одинаков для клеток всех типов: генерация электрических импульсов обусловлена распределением ионов по обе стороны мембран. Так как нервные окончания располагаются с одной стороны электрической пластинки, во время разряда она становится электроотрицательной по отношению к другой стороне.
Различают два типа мембран: одни возбуждаются только химическими медиаторами, другие — еще и электрическими импульсами. Мембраны первого типа имеются в электрических клетках морских рыб, второго — в клетках пресноводных рыб. В зависимости от того, каким образом комбинируются эти мембраны, можно выделить три типа электрических клеток с характерными функциями Их строение и принцип работы схематично показаны на рис. 1.
Верхние полосы обозначают мембраны, которые можно сравнить с полюсами электрических батарей. Заштрихованными полосами показана внутренняя часть мембраны, заряженная отрицательно; внешняя часть заряжена положительно. Слева на схеме изображено распределение потенциалов в мембранах невозбужденных клеток, справа — распределение потенциалов и направление тока (а также форма образующегося импульса) при его прохождении через клетку и воду, когда клетка возбуждена.
Рис. 1. Схематическое изображение состояния электрических клеток (до и в момент разряда) и создаваемые ими импульсные токи а — клетки морских рыб, б, в — клетки пресноводных рыб.
На рис. 1, а показано строение и работа электрических клеток морских рыб. Они представляют собой две мембраны, возбуждаемые химическими медиаторами (ацетилхолином), которые выделяют нервные окончания. Так как у морских рыб иннервируется только одна клеточная мембрана, то лишь в ней и происходит перераспределение потенциалов при возбуждении клетки Возникающий ток проходит через клетку и окружающую рыбу воду в одном направлении Напряжение однофазного импульса между наружными поверхностями клетки в этот момент равно потенциалу покоя клетки (т. е потенциалу невозбужденной клетки). У ската, например, напряжение импульса колеблется в пределах 55—60 мВ
На рис. 1, б и в показана работа электрогенераторных клеток пресноводных электрических рыб. В клетках электрического угря (см. рис 1, б) имеются две различные мембраны, одна из которых неиннервирована и может возбуждаться только химическими, а другая также и электрическими импульсами. Проходящий по нерву электрический импульс вызывает поляризацию мембраны. В момент возбуждения клетки ток проходит через нее и окружающую рыбу воду в одном направлении. Напряжение возникающего между наружными поверхностями клетки импульса несколько превышает потенциал невозбужденной клетки и составляет около 150 мВ.
У пресноводного электрического сома обе мембраны электрически возбудимы. Хотя нервные окончания подходят только к одной мембране, в момент прихода к нерву электрического импульса начинают функционировать обе. При возбуждении ток идет через клетку и воду в двух направлениях: сначала в одном, а затем, спустя некоторое время, в прямо противоположном. Поэтому в момент возбуждения клетки между ее наружными оболочками регистрируется характерный биполярный импульс. Абсолютное значение потенциала этого импульса несколько превышает сумму двух потенциалов клетки в покое.
Таким образом, характер и напряжение импульсов, генерируемых электрическими пластинками, обусловлены их конструкцией и комбинацией мембран. Напряжение импульса зависит также от характера иннервации мембраны и размера электрической пластинки.