Солнечный луч - Барабой Вилен Абрамович. Страница 50
Стимулированному излучению присущи совершенно новые свойства. Вследствие явления резонанса квант «вынуждающий» и квант «вынужденный» имеют одинаковую (или, строго говоря, очень близкую) энергию, длину волны и частоту колебаний. Лазерное излучение поэтому в высокой степени монохроматично. Конечно, и в свете обычных источников можно искусственно выделить интересующую нас узкую спектральную область, если, например, луч Солнца с помощью мощной призмы развернуть в полосу спектра и затем весь спектр, кроме избранной узкой полосы, экранировать и поглотить. Но какую бы узкую часть спектра мы ни старались выделить, она будет содержать лучи с несколькими различными частотами и длинами волн. Кроме того, по мере повышения монохроматичности пучка лучей интенсивность его резко падает, вплоть до ничтожной величины.
Принципиальная особенность вынужденного излучения, первая, но не единственная, и состоит в том, что практически все стимулированное свечение относится к очень узкому интервалу частот. Монохроматичность новых источников света несравненно выше всего, что можно было получить до создания лазеров.
Кстати, слово лазер (LASER) происходит от первых букв слов английской фразы Light Amplification by Stimulated Emission of Radiafion (что можно перевести как усиление света путем вынужденного испускания излучения).
Вторая, не менее удивительная особенность стимулированного излучения — пространственная и временная когерентность. Квант, столкнувший электрон с уровня возбуждения, и квант, возникший при этом соскоке, имеют не только одинаковую величину. Они и двигаются в одном направлении, распространяясь в пространстве параллельно; и волновые колебания, сопутствующие их движению, совершаются синхронно во времени, однофазно. Выделить в потоке солнечного света или излучения искусственных источников когерентную часть — еще более сложно, чем с помощью монохроматора выделить узкий спектральный пучок. Поэтому явление когерентности света физики и оптики стали изучать практически только после открытия лазеров. Эти кардинальные особенности лазерного излучения сделали возможным появление еще целого ряда удивительных свойств нового вида свечения.
Концентрация лучистой энергии во времени и пространстве
Почему вынужденное излучение не наблюдается обычно? И что нужно сделать, чтобы лазерный луч зажегся? На первый из этих вопросов ответить относительно просто. Чтобы получить вынужденное излучение, иными словами, чтобы добиться усиления приходящего извне света нужной частоты, необходимо иметь вещество, в котором большое количество электронов находилось бы на высших электронных уровнях возбуждения. А как этого добиться? Быть может, простым нагревом?
При повышении температуры, как известно, увеличивается количество атомов, энергия которых достаточно высока, чтобы забросить электрон на один из возбужденных уровней. Но эти переходы кратковременны, независимы друг от друга и, следовательно, хаотичны. В каждый данный момент все-таки подавляющее большинство электронов оказывается на основном, невозбужденном уровне.
Что произойдет в этом случае с квантами внешнего излучения, частота колебаний которых совпадает с разницей энергетических уровней вещества? Они попросту поглотятся веществом, израсходуются на возбуждение его электронов. Следовательно, для получения вынужденного излучения нужно сначала добиться перехода на уровень возбуждения большей части электронов вещества, достичь, выражаясь языком специалистов, инверсной (т. е. обратной) заселенности энергетических уровней. Если большинство электронов пребывает на уровне возбуждения, прохождение квантов резонансной частоты вызовет их массовый и одновременный соскок на основной уровень. Иными словами, инверсная заселенность — необходимое условие усиления света за счет вынужденного излучения.
Эти рассуждения, вытекающие в сущности из работ Эйнштейна, позволили в 1940 г. советскому физику В. А. Фабриканту предположить, что вынужденное излучение можно использовать для усиления светового потока. В годы Великой Отечественной войны эти работы прервались и возобновились только в 1951 г. Они завершились заявкой на изобретение. Однако дальнейшие шаги в направлении создания оптических квантовых генераторов (лазеров) суждено было сделать другим ученым — Н. Г. Басову и А. М. Прохорову в СССР, Ч. Таунсу в США. Первый действующий лазер был построен Т. Майманом в США в 1960 г.
В качестве рабочего вещества для возникновения вынужденного излучения в первых лазерах использовали стержни из искусственного рубина — кристалла окиси алюминия с небольшой (0,05—0,5%) примесью атомов хрома, придающих кристаллу красный цвет. Они-то и играют главную роль в возникновении стимулированного излучения, так как их электроны способны при возбуждении довольно длительно (3·10-3 сек) задерживаться на метастабильном уровне.
Если рубиновый стержень поместить внутрь спирально изогнутой мощной лампы (чаще всего ксеноновой), то такой рубиновый сердечник будет довольно равномерно освещаться лампой. Из широкого спектра свечения лампы какая-то одна группа частот окажется резонансной: при мощной вспышке лампы электроны атомов хрома одновременно (пусть на короткие доли секунды) взлетят на уровень возбуждения. Чтобы это произошло, вспышка ксеноновой лампы осуществляется разрядом батареи конденсаторов.
Итак, высший уровень возбуждения в атомах хрома заселен электронами. Дальше события развиваются молниеносно. Квант резонансной частоты (то ли высвеченный криптоновой лампой, то ли возникший в атоме хрома при разрядке метастабильного состояния), пролетая мимо возбужденного электрона, вызывает и его разрядку, освобождая второй, подобный себе квант. Если каждый из этих фотонов разрядит еще по одному возбужденному атому, количество фотонов снова удвоится. Налицо усиление света за счет вынужденного излучения.
Но лазер — детище второй половины XX в.— способен на большее. Если у торцов рубинового стержня установить зеркала (или нанести непосредственно на торцы, отражающий слой серебра), поток света, усиленного в стержне, отразится от зеркала, вернется в кристалл, отразится от второго зеркала и т. д. При каждом отражении интенсивность света возрастает за счет разрядки возбужденных атомов хрома. А возбуждение последних поддерживается периодическими импульсами ксеноновой лампы, которые как бы накачивают в кристалл энергию электронного возбуждения. Отсюда и название — «лампа накачки».
Интенсивность света в такой системе могла бы возрастать очень сильно. Но перегрев стержня прекращает генерацию вынужденного излучения. Поэтому в конструкции рубинового лазера — самого распространенного типа оптических квантовых генераторов в наши дни — предусмотрены, во-первых, охлаждение стержня и, во-вторых, своевременный отвод лучистой энергии. Одно из торцевых зеркал делается полупрозрачным, и когда лихорадочно (со скоростью света!) мечущийся внутри стержня от торца к торцу поток излучения достигает гигантской плотности, он вырывается наружу в виде мгновенного (длительностью в тысячные доли секунды) всплеска излучения невиданной яркости.
Рубиновый лазер генерирует излучение в красной области спектра с длиной волны 6943 А (небольшая часть излучения приходится на волну 6929 А). В энергию лазерного импульса преобразуется лишь небольшая часть энергии, излучаемой лампой накачки. Иными словами, коэффициент полезного действия рубинового лазера невелик — около 1%. Но это сравнительно небольшое количество лучистой энергии (мощность современных рубиновых лазеров колеблется от 1—2 до нескольких сот ватт) концентрируется прежде всего в пространстве — в узкий, практически не расходящийся пучок, а также во времени — в короткий импульс излучения. Если лазер генерирует лучистую энергию мощностью 1 Вт (т. е. 1 Дж. в секунду) [Джоуль равен 107 эрг.] и импульсы излучения продолжительностью в 0,001 сек следуют друг за другом с интервалом в 1 сек, то во время каждого импульса концентрация энергии в пучке достигает 1000 Дж. Особенности лазерного излучения, прежде всего его монохроматичность и когерентность, облегчают задачу концентрирования пучка в пятно ничтожного диаметра. Расчеты показывают, что предел концентрации — размер, соответствующий половине длины .волны света, т. е. для рубинового лазера минимальный возможный диаметр пятна — 0,2 мкм. Практически достигнутый предел — несколько меньше 1 мкм.