Чувства животных - Бертон Роберт. Страница 2
Если нам так трудно проникнуть в глубины сознания другого человека, чтобы увидеть вещи его глазами, то насколько же труднее увидеть мир посредством чувств мухи, летучей мыши или ската; однако до тех пор пока мы не сможем понять характер мира, в котором обитает животное, изучение его поведения будет бесплодным.
В следующих главах рассказывается о том, как животные различными способами используют чувства, которыми они наделены, в своей повседневной жизни: при отыскании пищи, убежища и особи противоположного пола или для того, чтобы спастись от врагов; о том, как органы чувств животных используются для сбора необходимой информации. Другими словами, мы увидим различные миры, в которых обитают животные, или, точнее, увидим, как животные реагируют на различный характер окружающей их среды. Среда, в которой обитает животное, представляет собой сумму всех действующих на него внешних влияний — тех влияний, которые должны регистрироваться его органами чувств.
Прежде чем исследовать различные миры, в которых обитают животные, необходимо объяснить, какую роль играют органы чувств в жизни животных, и рассмотреть методы, применяемые исследователями при изучении этих чувств. В самом упрощенном виде поведение животного можно представить в виде диаграммы, показанной на фиг. 1.
Органы чувств воспринимают из внешнего мира информацию, или сигналы, в форме энергии — такой, как свет или звуковые колебания. Полученная информация кодируется и передается по нервам в головной мозг, или центральную нервную систему. Ученые обычно предпочитают пользоваться последним термином, поскольку у многих примитивных животных нет характерного скопления нервных клеток, которое можно было бы назвать головным мозгом, и даже у более высокоорганизованных животных определенная информация обрабатывается в спинном мозгу, так и не доходя до головного.
В центральной нервной системе эта информация особым образом «сортируется» и сопоставляется с информацией, полученной от других органов чувств и из памяти. Затем принимается решение о том, как следует действовать в ответ на полученные сведения об окружающей среде. Для выполнения этого решения к мышцам по нервам посылаются импульсы. В результате такой последовательности операций животное либо изменяет окружающую его среду, либо, как правило, передвигается в новые, более благоприятные условия. Так, мокрица перебирается из сухого места во влажное — под камень или под бревно, а выпущенная на лужайку мышь поспешно прячется в траву. Восприняв неблагоприятные сигналы, оба животных изменяют свое местоположение таким образом, чтобы из окружающей их среды эти сигналы больше не поступали. Органы чувств животного и его среду можно рассматривать в их взаимосвязи как непрерывно действующую саморегулирующуюся систему, предназначенную для обеспечения животному наиболее благоприятных условий. Это является важным моментом для последующего изложения. О двух частях упомянутой выше системы — органах чувств и поведении — пойдет речь далее. Работа органов чувств разбирается подробно; функционирование же центральной нервной системы (в той степени, в какой оно нам известно) и работа мышечной системы лежат за пределами нашей темы. Главная задача книги — описать целостное поведение животного в связи с работой его органов чувств. Основные особенности структуры и механизма функционирования последних представлены на фиг. 2.
Каждый орган чувств получает из окружающей среды энергию в той или иной форме. Имеются два основных типа органов чувств или рецепторов: контактные и дистантные. К первым относятся органы вкуса и прикосновения; они получают сигналы от объектов, находящихся в контакте с телом животного. Дистантные рецепторы, такие, как глаза, уши и нос, собирают сигналы, которые могут быть ослаблены в результате того, что этим сигналам приходится преодолевать некоторое расстояние, а поэтому необходимо, чтобы органы чувств собрали и модифицировали их. В органах чувств информация превращается в серии нервных импульсов. Такой процесс называется преобразованием; в качестве наглядного примера можно привести преобразование звуковой энергии в электрическую, происходящее в головке микрофона. Под очень незначительным давлением звуковых волн слой угольного порошка в микрофонной головке уплотняется; по мере уплотнения электрическое сопротивление угольного слоя падает, и через него начинает проходить более сильный электрический ток. Биологические преобразователи — рецепторные клетки в органах чувств — почти так же преобразуют энергию внешней среды в электрическую. Раздражение рецепторной клетки создает электрический ток — рецепторный потенциал, который распространяется к нервному волокну и порождает мощный нервный импульс.
Почти все, что мы знаем о биологическом преобразовании, было получено при изучении простой рецепторной клетки, названной тельцем Пачини, которая чувствительна к давлению или изгибу. Пачиниевы тельца обнаружены во многих частях тела: в коже, мышцах и суставах. Мы не ощущаем их работы, но они постоянно измеряют давление и натяжение в различных частях нашего тела. Пачиниевы тельца особенно удобно использовать в экспериментах, потому что они достаточно крупные и легко отделяются от окружающей ткани. Легче всего их обнаружить в брыжейке, которая представляет собой очень тонкий прозрачный листок брюшины, фиксирующий кишечник к стенке брюшной полости. Пачиниевы тельца вместе с отходящими от них нервными волокнами можно вырезать из брыжейки и сохранить живыми в течение нескольких часов; при этом они будут реагировать на давление так же, как если бы они оставались в организме.
Тельце Пачини имеет форму луковицы длиной 1 мм и толщиной 0,5 мм (фиг. 3). Эта луковица образована слоями ткани, окружающей тонкое окончание нервного волокна. При действии на луковицу слабого давления она слегка изгибается и возникает серия нервных импульсов. Если удалить все слои луковицы, нервные импульсы все еще будут регистрироваться; это означает, что преобразование энергии происходит в нервном окончании, расположенном в центре луковицы. Осторожно изменяя степень изгиба и одновременно регистрируя последовательность нервных импульсов, исследователи обнаружили, что чем сильнее изгибается пачиниево тельце, тем больше частота нервных импульсов. Итак, центральная нервная система получает информацию о сжатии и напряжении тканей организма с помощью простого кода: число поступающих в каждую секунду нервных импульсов соответствует степени давления, испытываемого рецепторной клеткой.
Изолированное нервное окончание глубоко входит в луковицу, состоящую из тонких слоев ткани. Оказываемое на луковицу давление изгибает нервное окончание, в результате чего в нервном волокне возникает серия импульсов. 1 — луковица; 2 — нервное окончание; 3 — нервное волокно.
В результате многочисленных экспериментов были разрешены некоторые загадочные аспекты процесса, при помощи которого давление, оказываемое на пачиниево тельце, преобразуется в нервные импульсы. Мы располагаем достаточно ясной картиной этого процесса преобразования, хотя и не понимаем до конца, как он осуществляется. Можно провести аналогию между рецепторной клеткой и микрофоном. В нервном окончании тельца Пачини, как и в других рецепторных клетках, имеется постоянный электрический заряд, который меняется по мере деформации мембраны, покрывающей окончание нерва.
Этот постоянный заряд сенсорной клетки обусловлен различными концентрациями ионов (заряженных атомов или молекул) по обе стороны мембраны. На внешней поверхности мембраны концентрация положительных ионов больше, благодаря чему внешняя поверхность клетки оказывается заряженной положительно по отношению к внутренней. Когда клеточная мембрана деформируется, она как бы «дает течь», и положительные ионы устремляются внутрь, инвертируя при этом электрический заряд клетки. Не известно, каким именно образом свет, тепло, давление, химическая или другие формы энергии вызывают такой эффект, но в результате измененный заряд, т. е. рецепторный потенциал, распространяется по поверхности рецепторной клетки и, если он достаточно велик, порождает в связанном с ней нервном волокне «взрывной» импульс. После этого мембрана клетки вновь «запирается» и восстанавливается начальная разница в концентрации ионов.