Лазерная стимуляция в медико-биологическом обеспечении подготовки квалифицированных спортсменов - Павлов Сергей Иванович. Страница 11

Едва ли есть хоть одно направление в современной науке, где так или иначе не употреблялся бы термин «система», имеющий к тому же весьма древнее происхождение. Вместе с тем термин «система» в большинстве случаев употребляется как характеристика чего-то собранного вместе, упорядоченного, организованного, но при этом вне упоминания или даже «подразумевания» критерия, по которому компоненты собраны, упорядочены, организованы [П. К. Анохин, 1978]. В качестве примера: достаточно широко распространено употребление учеными и практиками в медицине и физиологии словосочетаний «сердечно-сосудистая система», «легочная система» и др., что принимается ими самими за доказательство «системности» их образа мышления при анализе некоего имеющегося у них фактического материала. Представление о системе как о взаимодействующих компонентах и собственно их взаимодействие «не может сформировать систему, поскольку анализ истинных закономерностей функционирования с точки зрения функциональной системы раскрывает скорее механизм «содействия» компонентов, чем их «взаимодействие»» и «… система, при своем становлении приобретает собственные и специфические принципы организации, не переводимые на принципы и свойства тех компонентов и процессов, из которых формируются целостные системы». Вместе с тем, «характерной чертой системного подхода является то, что в исследовательской работе не может быть аналитического изучения какого-то частичного объекта без точной идентификации этого частного в большой системе» [П. К. Анохин, 1978].

Теория функциональных систем была разработана П. К. Анохиным (1935) в результате проводимых им исследований компенсаторных приспособлений нарушенных функций организма. Как показали эти исследования, всякая компенсация нарушенных функций может иметь место только при мобилизации значительного числа физиологических компонентов, зачастую расположенных в различных отделах ЦНС и рабочей периферии, тем не менее всегда функционально объединенных на основе получения конечного приспособительного эффекта. Такое функциональное объединение различно локализованных структур и процессов на основе получения конечного (приспособительного) эффекта и было названо «функциональной системой» [П. К. Анохин, 1968]. При этом принцип функциональной системы используется как единица саморегуляторных приспособлений в многообразной деятельности целого организма. «Понятие функциональной системы представляет собой прежде всего динамическое понятие, в котором акцент ставится на законах формирования какого-либо функционального объединения, обязательно заканчивающегося полезным приспособительным эффектом и включающего в себя аппараты оценки этого эффекта» [П. К. Анохин, 1958]. Ядром функциональной системы является приспособительный эффект, определяющий состав, перестройку эфферентных возбуждений и неизбежное обратное афферентирование о результате промежуточного или конечного приспособительного эффекта. Понятие функциональной системы охватывает все стороны приспособительной деятельности целого организма, а не только взаимодействия или какую-либо комбинацию нервных центров («констелляция нервных центров» – по А. А. Ухтомскому, 1966) [П. К. Анохин, 1958].

Согласно теории функциональных систем, центральным системообразующим фактором каждой функциональной системы является результат ее деятельности, определяющий в целом для организма условия течения метаболических процессов [П. К. Анохин, 1980]. Именно достаточность или недостаточность результата определяет поведение системы: в случае его достаточности организм переходит на формирование другой функциональной системы с другим полезным результатом, представляющим собой следующий этап в универсальном континууме результатов. В случае недостаточности полученного результата происходит стимулирование активирующих механизмов, возникает активный подбор новых компонентов, создается перемена степеней свободы действующих синаптических организаций и, наконец, после нескольких «проб и ошибок» находится совершенно достаточный приспособительный результат. Таким образом, системой можно назвать только комплекс таких избирательно вовлеченных компонентов, у которых взаимодействие и взаимоотношения принимают характер взаимосодействия компонентов для получения конкретного полезного результата [П. К. Анохин, 1978].

Были сформулированы основные признаки функциональной системы как интегративного образования:

1. Функциональная система является центрально-периферическим образованием, становясь, таким образом, конкретным аппаратом саморегуляции. Она поддерживает свое единство на основе циклической циркуляции от периферии к центрам и от центров к периферии, хотя и не является «кольцом» в полном смысле этого слова.

2. Существование любой функциональной системы непременно связано с получением какого-либо четко очерченного результата. Именно этот результат определяет то или иное распределение возбуждений и активностей по функциональной системе в целом.

3. Другим абсолютным признаком функциональной системы является наличие рецепторных аппаратов, оценивающих результаты ее действия. Эти рецепторные аппараты в одних случаях могут быть врожденными, в других это могут быть обширные афферентные образования центральной нервной системы, воспринимающие афферентную сигнализацию с периферии о результатах действия. Характерной чертой такого афферентного аппарата является то, что он складывается до получения самих результатов действия.

4. Каждый результат действия такой функциональной системы формирует поток обратных афферентаций, представляющих все важнейшие признаки (параметры) полученных результатов. В том случае, когда при подборе наиболее эффективного результата эта обратная афферентация закрепляет последнее наиболее эффективное действие, она становится «санкционирующей афферентацией».

5. В поведенческом смысле функциональная система имеет ряд дополнительных широко разветвленных аппаратов.

6. Жизненно важные функциональные системы, на основе которых строится приспособительная деятельность новорожденных животных к характерным для них экологическим факторам, обладают всеми указанными выше чертами и архитектурно оказываются созревшими точно к моменту рождения. Из этого следует, что объединение частей каждой жизненно важной функциональной системы (принцип консолидации) должно стать функционально полноценным на каком-то сроке развития плода еще до момента рождения [П. К. Анохин, 1968].

Функциональная система всегда гетерогенна. Конкретным механизмом взаимодействия компонентов любой функциональной системы является освобождение их от избыточных степеней свободы, не нужных для получения данного конкретного результата, и, наоборот, сохранение всех тех степеней свободы, которые способствуют получению результата. В свою очередь, результат через характерные для него параметры и благодаря системе обратной афферентации имеет возможность реорганизовать систему, создавая такую форму взаимодействия между ее компонентами, которая является наиболее благоприятной для получения именно запрограммированного результата. Смысл системного подхода состоит в том, что элемент или компонент функционирования не должен пониматься как самостоятельное и независимое образование, он должен пониматься как элемент, чьи степени свободы подчинены общему плану функционирования системы, направляемому получением полезного результата. Таким образом, результат является неотъемлемым и решающим компонентом системы, создающим упорядоченное взаимодействие между всеми другими ее компонентами.

Все ранее известные формулировки систем построены на принципе взаимодействия множества компонентов. Вместе с тем элементарные расчеты показывают, что простое взаимодействие огромного числа компонентов, например человеческого организма, ведет к бесконечно огромному числу степеней их свободы. Даже оценивая только число степеней свобод основных компонентов ЦНС, но принимая при этом во внимание наличие, по крайней мере, пяти возможных изменений в градации состояний нейрона [T. Bullock, 1958], можно получить совершенно фантастическую цифру с числом нулей на ленте длиной более 9 км [П. К. Анохин, 1978]. То есть простое взаимодействие компонентов реально не является фактором, объединяющим их в систему. Именно поэтому в большинство формулировок систем входит термин «упорядочение». Однако, вводя этот термин, необходимо понять, что же «упорядочивает» «взаимодействие» компонентов системы, что объединяет эти компоненты в систему, что является системообразующим фактором.