Полный справочник медицинской аппаратуры - Коллектив авторов. Страница 13
Описанные выше аппараты относятся к линейным томографам (с линейными траекториями), так как проекции траекторий движения системы «трубка – пленка» на выделяемую плоскость имеют вид прямой линии, а тени размазывания имеют прямолинейную форму.
За угол поворота (качания) трубки 2i в таких томографах принимают угол ее поворота из одного крайнего положения в другое; перемещение трубки от нулевого положения равно i.
В томографах с нелинейным размазыванием перемещение системы «трубка – пленка» происходит по криволинейным траекториям – кругу, эллипсу, гипоциклоиде, спирали. При этом отношение расстояний фокус трубки – центр вращения и центр вращения – пленка сохраняется постоянным. И в этих случаях доказано, что геометрическим местом точек, проекции которых при движении системы неподвижны относительно пленки, является плоскость, параллельная плоскости пленки и проходящая через ось качания системы. Размазывание изображения точек объекта, лежащих вне выделяемой плоскости, происходит по соответствующим кривым траекториям движения системы. Размазываемые изображения повторяют на пленке траекторию перемещения фокуса рентгеновской трубки.
При симультанной (многослойной) томографии в один прием (одно перемещение трубки и пленки в противоположных направлениях) получают несколько томограмм благодаря расположению в одной кассете нескольких пленок, расположенных на некотором расстоянии друг от друга. Проекция изображения первого слоя, находящегося на оси вращения системы (избранной высоте слоя), получается на верхней пленке. Геометрически доказано, что на последующих пленках получают свое изображение нижележащие параллельные оси движения системы слои, расстояния между которыми примерно равны расстояниям между пленками. Основным недостатком продольной томографии является то, что расплывчатые изображения выше– и нижележащих плоскостей с нежелательной информацией уменьшают естественную контрастность. Вследствие этого восприятие в выделяемом слое тканей с невысокой контрастностью ухудшается.
Указанного недостатка лишена аксиальная компьютерная рентгеновская томография. Это объясняется тем, что строго кол-лимированный пучок рентгеновского излучения проходит только через ту плоскость, которая интересует врача. При этом регистрация рассеянного излучения сведена к минимуму, что значительно улучшает визуализацию тканей, особенно малоконтрастных. Снижение регистрации рассеянного излучения при компьютерной томографии осуществляется коллиматорами, один из которых расположен на выходе рентгеновского пучка из трубки, другой – перед сборкой детекторов.
Спиральная КТ используется в клинической практике с 1988 г., когда компания Siemens Medical Systems представила первый спиральный компьютерный томограф. Спиральное сканирование заключается в одновременном выполнении двух действий: непрерывного вращения источника – рентгеновской трубки, генерирующей излучение, вокруг тела пациента и непрерывного поступательного движения стола с пациентом вдоль продольной оси сканирования z через апертуру гентри. В этом случае траектория движения рентгеновской трубки относительно оси z – направления движения стола с телом пациента – примет форму спирали.
В отличие от последовательной КТ скорость движения стола с телом пациента может принимать произвольные значения, определяемые целями исследования. Чем выше скорость движения стола, тем больше протяженность области сканирования. Важно то, что скорость движения стола может быть в 1,5–2 раза больше толщины томографического слоя без ухудшения пространственного разрешения изображения.
Технология спирального сканирования позволила значительно сократить время, затрачиваемое на КТ-исследование, и существенно уменьшить лучевую нагрузку на пациента.
Мультиспиральная (мультисрезовая) МСКТ была впервые представлена компанией Elscint Co в 1992 г. Принципиальное отличие МСКТ-томографов от спиральных томографов предыдущих поколений состоит в том, что по окружности гентри расположены не один, а два и более ряда детекторов. Для того чтобы рентгеновское излучение могло одновременно приниматься детекторами, расположенными на разных рядах, была разработана новая – объемная – геометрическая форма пучка. В 1992 г. появились первые двухсрезовые (двухспиральные) МСКТ-томографы с двумя рядами детекторов, а в 1998 г. – четырехсрезовые (четырехспиральные) – с четырьмя рядами детекторов соответственно. Кроме вышеотмеченных особенностей, было увеличено количество оборотов рентгеновской трубки с 1 до 2 в секунду. Таким образом, четырехспиральные МСКТ-томографы 5-го поколения на сегодняшний день в 8 раз быстрее, чем обычные спиральные КТ-томографы 4-го поколения. В 2004–2005 гг. были представлены 32– и 64-срезовые МСКТ-томографы.
Преимущества МСКТ перед обычной спиральной КТ:
1) улучшение временного разрешения;
2) улучшение пространственного разрешения вдоль продольной оси z;
3) увеличение скорости сканирования;
4) улучшение контрастного разрешения;
5) увеличение отношения сигнал / шум;
6) эффективное использование рентгеновской трубки;
7) большая зона анатомического покрытия;
8) уменьшение лучевой нагрузки на пациента.
Все эти факторы значительно повышают скорость и информативность исследований.
Методики контрастного усиления позволяют различать и определять характер опухолей (новообразований) на фоне окружающих их мягких тканей в тех случаях, когда они не видны при обычном исследовании.
Лучевая нагрузка при мультиспиральном КТ-исследовании при сопоставимых объемах диагностической информации меньше на 30 % по сравнению с обычным спиральным КТ-исследова-нием. Для этого улучшается фильтрация спектра рентгеновского излучения и производится оптимизация массива детекторов. Разработаны алгоритмы, позволяющие в реальном масштабе времени автоматически уменьшать ток и напряжение на рентгеновской трубке в зависимости от исследуемого органа, размеров и возраста каждого пациента.
В 2005 г. компанией Siemens Medical Solutions представлен первый аппарат с двумя источниками рентгеновского излучения. Теоретические предпосылки к его созданию были еще в 1979 г., но технически его реализация в тот момент была невозможна. По сути он является одним из логичных продолжений технологии МСКТ. Дело в том, что при исследовании сердца (КТ-коронаро-графии) необходимо получение изображений объектов, находящихся в постоянном и быстром движении, что требует очень короткого периода сканирования. В МСКТ это достигалось синхронизацией ЭКГ и обычного исследования при быстром вращении трубки. Но минимальный промежуток времени, требуемый для регистрации относительно неподвижного среза для МСКТ при времени обращения трубки, равном 0,33 с (~ 3 оборота в секунду), равен 173 мс, т. е. половине периода обращения трубки.
Такое временное разрешение вполне достаточно для нормальной частоты сердечных сокращений. Некоторое время пытались увеличить скорость вращения трубки в гентри томографа. В настоящее время достигнут предел технических возможностей для ее увеличения, так как при обороте трубки в 0,33 с масса ее возрастает в 28 раз (перегрузки 28g). Чтобы получить временное разрешение менее 100 мс, требуется преодоление перегрузок более чем 75g. Использование же двух рентгеновских трубок, расположенных под углом 90°, дает временное разрешение, равное четверти периода обращения трубки (83 мс при обороте за 0,33 с). Это позволило получать изображения сердца независимо от частоты сокращений.
Также такой аппарат имеет еще одно значительное преимущество: каждая трубка может работать в своем режиме (при различных значениях напряжения и тока, кВ и мА соответственно). Это позволяет лучше дифференцировать на изображении близкорасположенные объекты различных плотностей. Особенно это важно при контрастировании сосудов и образований, находящихся близко от костей, или металлоконструкций. Данный эффект основан на различном поглощении излучения при изменении его параметров у смеси кровь + йодсодержащее контрастное вещество при неизменности этого параметра у гидроксиапатита (основы кости) или металлов.