Тайная жизнь тела. Клетка и ее скрытые возможности - Вейсман Михаил. Страница 6

Глава 2. Как ДНК передает информацию

Все, что мы знаем о ДНК сегодня, имеет в своей основе открытие, сделанное в 1953 году. Изящность предложенной модели сразу же покорила научный мир. Стало понятно, что генетический код представляет собой последовательность нуклеотидов (элементов) в двойной спирали ДНК. В случае необходимости двойная спираль расплетается, и с одной из ее половин информация считывается на строящуюся молекулу рибонуклеиновой кислоты (РНК), которая передает эту информацию каждому произведенному ею белку (см. выше). Кроме того, при полном разделении спиралей ДНК каждая из половин может стать матрицей для достройки второй половины («самовоспроизведение»).

Расшифровка структуры ДНК стала одним из самых крупных открытий в истории науки. Оно позволило лучше понять такие проблемы, как взаимодействие наследственности и внешней среды, мутации и их последствия для синтеза белка, и, главное, приблизило человечество к пониманию самого происхождения жизни.

Но как ДНК передает информацию?

Когда мы обмениваемся информацией, мы используем буквы и звуки. Точно так же поступает и ДНК. Только в этом случае роль звуков и букв играют основания азотистой кислоты.

Итак, молекула ДНК состоит из двух гигантских цепочек. Каждое звено в ней сложено из состоит углевода дезоксирибозы (то есть рибоксиновой кислоты, лишенной кислорода), остатка фосфорной кислоты и одного из четырех азотистых оснований (А, Г, Т или Ц). Последовательность звеньев в цепочке может быть любой, но эта последовательность строго связана с последовательностью звеньев в другой (парной) полимерной цепочке: напротив А должно быть Т, напротив Т должно быть А, напротив Ц должно быть Г, а напротив Г должно быть Ц (это правило назвали правилом комплементарности; то же самое правило мы можем наблюдать в пазлах, когда выемке одного элемента соответствует выпуклость другого).

Две полимерные цепи закручены в правильную двойную спираль. Внешне она напоминает веревочную лестницу, завитую в правую спираль. Ступенями в этой лестнице являются пары нуклеотидов, а связывающие их «боковинки» состоят из сахарофосфатного остова.

Последовательность пар нуклеоидов нерегулярна. То есть каждая ДНК отличается друг от друга именно этой самой последовательностью. Расположение парных оснований по цепи ДНК представляет собой код, определяющий тот порядок, в соответствии с которым производятся белки, производимые каждой клеткой.

Если вернуться к аналогии с человеческой речью (точнее, с текстом), то каждое азотистое основание можно назвать одной буквой. Получается, что алфавит ДНКового текста содержит всего четыре «буквы». Как же из этих «букв» формируются «слова» и «предложения»?

Очень понятно это объясняет книга, написанная Вячеславом Тарантулом. Она называлась «Геном человека: Энциклопедия, написанная четырьмя буквами». Автор пишет: «Белковые молекулы всех существующих на земле организмов построены всего из 20 аминокислот. Сразу после создания модели ДНК стало ясно, что существует некий код, переводящий четырехбуквенный ДНКовый текст в двадцатибуквенный аминокислотный текст. Элементарные расчеты говорили о том, что число возможных сочетаний, в которых четыре нуклеотида могут быть по-разному расположены в «тексте», достигает астрономических значений. Так, молекула ДНК, состоящая, к примеру, всего из 100 пар нуклеотидов, может теоретически кодировать в сотой степени различных белковых «текстов». Какова же ситуация на самом деле?

Одним из первых в этом пытался разобраться русский физик Г. Гамов, эмигрировавший в Америку. Наслушавшись многочисленных разговоров о ДНК и узнав, что она содержит – как и карты – всего четыре «масти», Гамов решил «разложить пасьянс» с целью понять устройство генетического кода. Ему сразу стало ясно, что код не может быть «двоичным», то есть одну аминокислоту в белке должна кодировать не двойка нуклеотидов – «букв», а как минимум тройка. Дело в том, что сочетание из четырех по два дает всего 16 комбинаций, а этого недостаточно для кодирования всех 20 аминокислот. Следовательно, рассуждал Гамов, код должен быть по крайней мере трехбуквенным, то есть каждую аминокислоту должна кодировать тройка «букв» в любых сочетаниях. На этом он и остановился, поскольку далее возникало множество вопросов. В частности, такой: число сочетаний из четырех по три равно 64, а аминокислот всего 20. Зачем же такая избыточность в трехбуквенном коде?

Тайна древнего шифра

Тогда уже существовал хорошо известный путь, который, в частности, был проделан в свое время французом Жаном Шампольоном при дешифровке иероглифов Древнего Египта. В качестве основного подспорья для решения стоящей перед ним задачи он использовал базальтовую плиту, которую обнаружили во время военной кампании Наполеона в Египет и которая получила название Розеттский камень. На плите одновременно присутствовали две надписи: одна была иероглифическая, а другая – сделанная греческими буквами на греческом языке. К счастью, и язык, и письмо древних греков были в то время уже хорошо известны ученым. В результате сравнение двух текстов Розеттского камня привело к расшифровке египетской иероглифики. Этим путем и двинулись ученые при расшифровке генетического кода. Надо было сравнить два текста: текст, записанный в ДНК, с текстом, записанным в белке. Однако первоначально ученые не умели «читать» ДНК, а одного известного в то время белкового текста было недостаточно. Пришлось искусственно синтезировать разнообразные короткие фрагменты РНК и синтезировать на них в искусственных системах фрагменты белка. Весной 1961 года в Москве на Международном биохимическом конгрессе М. Ниренберг сообщил, что ему удалось «прочесть» первое «слово» в ДНКовом тексте. Это была тройка букв – AAA (в РНК, соответственно, YYY), то есть три аденина, стоящие друг за другом, – которая кодирует аминокислоту фенилаланин в белке. Так было положено начало расшифровке генетического кода.

Такой путь в конечном итоге вскоре привел к полной расшифровке генетического кода. Подтвердилось предположение Гамова, что код триплетный: одной аминокислоте в белках соответствует последовательность из трех нуклеотидов в ДНК и РНК. Такие кодирующие тройки нуклеотидов – «слова» – получили название кодонов.

Важно понимать, что ДНК передает информацию дважды: в первый раз, когда кодирует белок (то есть задает последовательность атомов в процессе его производства), и во второй – когда делится на две части. Чтобы передать генетическую информацию вновь образуемой клетке.

Экспериментально установлено, что одновременно с делением клетки ДНК снимает с самой себя точные копии в процессе удвоения, или репликации. Во время клеточного деления слабые связи между двумя цепями двойной спирали ДНК разрушаются, в результате чего нити разделяются. Затем на каждой из них строится вторая, «дочерняя» (комплементарная) цепь ДНК. В результате этого молекула ДНК удваивается, как и клетка, и в обеих клетках оказывается по одной полной копии ДНК. Копии должны быть полностью идентичными, чтобы сохранить всю генетическую информацию.

Глава 3. Наследственность, или Бессмертный ген

Британский биолог Ричард Докинз однажды решил проследить судьбу отдельно взятого гена и пришел к выводу, что он – бессмертен! Каждый раз, делясь и восстанавливаясь в новой клетке, ген, практически без изменений, путешествует из одного организма в другой, продолжаясь в каждом поколении. Докинз даже предположил, что не сами люди, а их гены правят миром, а каждый конкретный живой организм служит лишь временным прибежищем для них. По его мнению, гены практически бессмертны, в отличие от живых организмов, в которых они существуют. Некоторым генам десятки и даже сотни миллионов лет. Гены, пользуясь терминологией Докинза, делают все возможное, чтобы выжить. Приспосабливаются к жаре и холоду, выбирая себе местечко получше, мигрируют с помощью человека и вступают в новые комбинации. Человек оказался довольно непоседливым хозяином. За тысячи лет он сильно исколесил мир, распространяя свое присутствие, влияние и свою начинку – гены.