Наши космические пути - Коллектив авторов. Страница 69

Научные измерительные станции, расположенные в различных районах Советского Союза, ведут наблюдения за первым межпланетным полетом. Определение элементов траектории осуществляется на электронных счетных машинах по данным измерений, автоматически поступающим в координационно-вычислительный центр.

Обработка результатов измерений позволит получить данные о движении космической ракеты и определить те участки межпланетного пространства, в которых производятся научные наблюдения.

Созидательный труд всего советского народа, направленный на решение важнейших проблем развития социалистического общества в интересах всего прогрессивного человечества, позволил осуществить первый успешный межпланетный полет.

Пуск советской космической ракеты еще раз показывает высокий уровень развития отечественного ракетостроения и вновь демонстрирует всему миру выдающееся достижение передовой советской науки и техники.

Величайшие тайны Вселенной сделаются более доступными человеку, который в недалеком будущем сам сможет ступить на поверхность других планет.

Коллективы научно-исследовательских институтов, конструкторских бюро, заводов и испытательных организаций, создавшие новую ракету для межпланетных сообщений, посвящают этот пуск XXI съезду Коммунистической партии Советского Союза.

Передача данных о полете космической ракеты будет производиться регулярно всеми радиостанциями Советского Союза.

Наши космические пути - _1.jpg

Мир движется к коммунизму, С коммунизмом связан и прочный мир в мире, и развитие культуры, служащей интересам человека.

Людям коммунизма подвластны космические дали!

Иозеф РЫБАК, чехословацкий писатель

 ИЗ СООБЩЕНИЯ ТАСС ОТ 6 ЯНВАРЯ 1969 ГОДА

После создания Советским Союзом первого искусственного спутника Земли запуск 2 января 1959 года советской космической ракеты, ставшей на вечные времена первой искусственной планетой нашей солнечной системы, является величественным событием эпохи построения коммунизма и открывает эру межпланетных полетов.

СОВЕТСКАЯ КОСМИЧЕСКАЯ РАКЕТА В СТОРОНУ ЛУНЫ

Полет космической ракеты

Космическая многоступенчатая ракета стартовала с поверхности Земли вертикально. Под действием программного механизма автоматической системы, управляющей ракетой, ее траектория постепенно отклонялась от вертикали. Скорость ракеты быстро нарастала. В конце участка разгона последняя ступень ракеты набрала скорость, необходимую для своего дальнейшего движения. Автоматическая система управления последней ступени выключила ракетный двигатель и подала команду на отделение контейнера с научной аппаратурой от последней ступени. Контейнер и последняя ступень ракеты вышли на траекторию и начали движение по направлению к Луне, находясь на близком расстоянии друг от друга.

Чтобы преодолеть земное притяжение, космическая ракета должна набрать скорость, не меньшую, чем вторая космическая скорость. Вторая космическая скорость, называемая также параболической скоростью, у поверхности Земли составляет 11,2 километра в секунду. Эта скорость является критической в том смысле, что при меньших скоростях, называемых эллиптическими, тело либо становится спутником Земли, либо, поднявшись на некоторую предельную высоту, возвращается на Землю. При скоростях, больших второй космической скорости (гиперболических скоростях) или равных ей, тело способно преодолеть земное тяготение и навсегда удалиться от Земли.

Советская космическая ракета к моменту выключения ракетного двигателя последней ее ступени превысила вторую космическую скорость. На дальнейшее движение ракеты, до сближения ее с Луной, основное влияние оказывает сила притяжения Земли. Вследствие этого, согласно законам небесной механики, траектория движения ракеты относительно центра Земли очень близка к гиперболе, для которой центр Земли является одним из ее фокусов. Траектория наиболее искривлена вблизи Земли и распрямляется с удалением от Земли. На больших расстояниях от Земли траектория становится весьма близкой к прямой линии.

В начале движения ракеты по гиперболической траектории она движется весьма быстро. Однако, по мере удаления от Земли, скорость ракеты под действием силы земного тяготения уменьшается. Так, если на высоте 1500 километров скорость ракеты относительно центра Земли была несколько более 10 километров в секунду, то на высоте 100 тысяч километров она равнялась уже примерно 3,5 километра в секунду.

Скорость поворота радиуса-вектора, соединяющего центр Земли с ракетой, убывает, согласно второму закону Кеплера, обратно пропорционально квадрату расстояния от центра Земли. Если в начале движения эта скорость составляла примерно 0,07 градуса в секунду, то есть более чем в 15 раз превышала угловую скорость суточного вращения Земли, - то примерно через час она стала меньше угловой скорости Земли. Когда же ракета приближалась к Луне, то скорость поворота ее радиуса-вектора уменьшилась более чем в 2000 раз и стала уже в 5 раз меньше угловой скорости обращения Луны вокруг Земли. Скорость же обращения Луны составляет лишь 1/27 угловой скорости Земли.

Эти особенности движения ракеты по траектории определили характер ее перемещения относительно поверхности Земли.

На карте изображено перемещение проекции ракеты на поверхность Земли с течением времени. Пока скорость поворота радиуса-вектора ракеты была велика по сравнению со скоростью вращения Земли, эта проекция перемещалась на восток, постепенно отклоняясь на юг. Затем проекция стала перемещаться сначала на югозапад и через 6-7 часов после старта ракеты, когда скорость поворота радиуса-вектора стала весьма мала, — почти точно на запад.

Движение ракеты на небесной сфере было очень неравномерным — быстрое вначале и очень медленное к концу.

Примерно через час полета путь ракеты на небесной сфере вошел в созвездие Волосы Вероники. Затем ракета перешла на небесном своде в созвездие Девы, в « котором и произошло ее сближение с Луной.

3 января в 3 часа 57 минут московского времени, когда ракета находилась в созвездии Девы, примерно в середине треугольника, образованного звездами Арктуром, Спикой и Альфой Весов, специальным устройством, установленным на борту ракеты, была создана искусственная комета, состоящая из паров натрия, светящихся в лучах Солнца. Эту комету можно было наблюдать с Земли оптическими средствами в течение нескольких минут. Во время прохождения около Луны ракета находилась на небесной сфере между звездами Спика и Альфа Весов.

Путь ракеты на небесном своде при сближении с Луной наклонен к пути Луны примерно на 50 градусов. Вблизи Луны ракета двигалась на небесной сфере приблизительно в 5 раз медленнее, чем Луна.

Луна, двигаясь по своей орбите вокруг Земли, подходила к точке сближения с ракетой справа, если смотреть с северной части Земли. Ракета приближалась к этой точке сверху и справа. В период наибольшего сближения ракета находилась выше и немного правее Луны.

Время полета ракеты до орбиты Луны зависит от избытка начальной скорости ракеты над второй космической скоростью и будет тем меньше, чем больше этот избыток. Выбор величины этого избытка был произведен с учетом того, чтобы прохождение ракеты вблизи Луны можно было наблюдать радиосредствами, расположенными на территории Советского Союза и в других странах Европы, а также в Африке и в большей части Азии. Время движения космической ракеты до Луны составило 34 часа.

Во время наибольшего сближения расстояние между ракетой и Луной составляло, по уточненным данным, 5-6 тысяч километров, то есть примерно полтора поперечника Луны.

Когда космическая ракета приблизилась к Луне на расстояние в несколько десятков тысяч километров, притяжение Луны начало оказывать заметное влияние на движение ракеты. Действие тяготеция Луны привело к отклонению направления движения ракеты и изменению величины скорости ее полета вблизи Луны. При сближении Луна была ниже ракеты, и поэтому, вследствие притяжения Луны, направление полета ракеты отклонилось вниз. Притяжение Луны создало также местное увеличение скорости. Это увеличение достигло максимума в районе наибольшего сближения.