Звезды: их рождение, жизнь и смерть - Шкловский Иосиф Самуилович. Страница 8

Так как никакие процессы взаимодействия возбужденных атомов с веществом и излучением «не успевают» произойти, практически все атомы, ионы и молекулы могут совершать переходы только «вниз», в основное состояние, излучая соответствующие кванты. Переходы «вверх», т. е. в состояние с более высокой энергией, возможны только для атомов, находящихся в самом «глубоком», основном состоянии. Как правило, такие процессы связаны с поглощением ультрафиолетовых квантов, так как частоты резонансных линий и потенциалы ионизации атомов и ионов достаточно велики. Таким образом, в межзвездной среде должен происходить очень важный процесс «переработки» квантов: атомы поглощают ультрафиолетовые кванты, а потом, после рекомбинации на возбужденные уровни и ряда «каскадных» переходов «вниз», на основной уровень, излучают менее энергичные кванты, длины волн которых находятся в оптическом диапазоне. Такой процесс в лабораторной физике носит название «флуоресценции».

В межзвездном пространстве типичной является следующая ситуация. Облако межзвездного газа, находящееся в сравнительной близости от горячей (и поэтому сильно излучающей в ультрафиолетовой части спектра) звезды поглощает кванты, способные ионизовать водород. Длина волны таких квантов должна быть меньше 912 Å. Из-за поглощения этих квантов подавляющая часть водородных атомов в облаке становится ионизованными. Электроны, рекомбинируя с протонами, будут излучать уже кванты в видимой и инфракрасной областях, например, в линиях бальмеровской серии. Те нее электроны, сталкиваясь с атомами и ионами кислорода, азота, серы и других элементов, будут возбуждать имеющиеся у них метастабильные уровни. Последние будут беспрепятственно «высвечиваться», излучая при этом запрещенные линии.

Области межзвездного газа, расположенные в сравнительной близости от горячих звезд-гигантов спектральных классов О и В, обязательно должны быть полностью ионизованными. Будет ли, однако, ионизован весь межзвездный газ? Расчеты, подкрепленные наблюдениями (см. ниже), показывают, что в большей части межзвездной среды водород будет не ионизован. Горячие звезды способны ионизовать водород вокруг себя только до определенного расстояния, зависящего как от мощности ультрафиолетового излучения звезды, так и от плотности межзвездной среды. Таким образом, «топология» ионизации межзвездной среды выглядит весьма своеобразно: вокруг горячих звезд имеются замкнутые полости (в идеальном случае постоянной плотности межзвездной среды — сферы), где водород ионизован, в то время как между полостями водород нейтрален. Области межзвездной среды, где водород ионизован, называются «зоны Н II», а области нейтрального водорода — «зоны Н I». Радиус какой-нибудь зоны Н II определяется из баланса ионизации внутри нее: количество поглощенных в этой зоне за единицу времени ультрафиолетовых квантов (которые излучаются горячей звездой) равно количеству рекомбинаций между протонами и электронами. Так как каждый поглощенный квант приводит к появлению пары ионов, в тс время как каждый акт рекомбинации уничтожает пару ионов, наше условие просто означает неизменность состояния ионизации со временем. Запишем это условие математически:

Звезды: их рождение, жизнь и смерть - img_43.png
(2.2)

где R — радиус зоны ионизации, которую мы предполагаем сферической,

Звезды: их рождение, жизнь и смерть - img_44.png
NeNi — число рекомбинаций в единице объема за секунду, Ne = Ni — концентрации электронов и ионов,
Звезды: их рождение, жизнь и смерть - img_45.png
 — коэффициент рекомбинации, L(T) — мощность ультрафиолетового излучения звезды, зависящая от температуры ее поверхности, h
Звезды: их рождение, жизнь и смерть - img_46.png
 — средняя энергия ультрафиолетовых квантов. Из формулы (2.2) следует, что

Звезды: их рождение, жизнь и смерть - img_47.png
(2.3)

Расчеты показывают, что при Ne

Звезды: их рождение, жизнь и смерть - img_48.png
1 см-3 (величина, недалекая от действительности; см. ниже) для звезд спектральных классов О и В величина R может достигнуть многих десятков парсек. Внутри этой огромной области находятся десятки тысяч звезд. Интересно, что переход между зонами H II и Н I очень резок: на протяжении каких-нибудь сотых долей парсека межзвездный водород из состояния почти 100%-ной ионизации переходит в нейтральное состояние.

Все поглощенное ультрафиолетовое излучение центральной горячей звезды зона H II «перерабатывает» в «видимые» и «инфракрасные» кванты бальмеровской и пашеновской серий водорода и в запрещенные линии, а также в ультрафиолетовые кванты линии «лайман-альфа». Поэтому для наблюдателя такая зона должна представлять собой неправильной формы протяженный объект, более или менее сильно излучающий в отдельных спектральных линиях. Но это есть не что иное, как газовые туманности, наиболее яркие из которых (например, в созвездии Ориона) уже очень давно известны астрономам. Излучение единицы объема такой туманности обусловлено различного рода столкновениями между электронами и ионами, приводящими к появлению атомов и ионов в возбужденных состояниях. Поэтому указанное излучение должно быть пропорционально квадрату плотности Ne2. Основной характеристикой, определяющей условия наблюдения туманностей, является их поверхностная яркость, которая пропорциональна произведению излучения единицы объема на протяженность излучающей области по лучу зрения R. Следовательно, поверхностная яркость туманности I пропорциональна величине Ne2R, называемой «мерой эмиссии».

На рис. 2.3—2.5 приведены несколько фотографий областей Н II— газовых туманностей. Эти фотографии получены через фильтр, пропускающий красную водородную линию H

Звезды: их рождение, жизнь и смерть - img_49.png
. Хорошо видно сложное распределение яркости у этих объектов. Следует, однако, иметь в виду, что «клочковатая» структура поглощающих свет пылевых облаков (проектирующихся на туманности либо находящихся в них) сильно искажает действительную картину распределения яркости.

Звезды: их рождение, жизнь и смерть - img_50.png
Рис. 2.3:
Звезды: их рождение, жизнь и смерть - img_51.png
Рис. 2.4:

Зная из астрономических наблюдений поверхностную яркость туманности, всегда можно получить соответствующую ей меру эмиссии. Если при этом известна ее протяженность по лучу зрения R, то сразу же определяется величина Ne, т.е. плотность межзвездного газа. Следует, однако, подчеркнуть, что по причине весьма неоднородного распределения межзвездного газа таким образом определенная плотность имеет смысл некоторого среднего значения. Оказывается, что в облаках межзвездного газа средняя плотность — около 10 ионизованных атомов водорода на кубический сантиметр. Отдельные, очень плотные облака имеют концентрацию атомов порядка нескольких тысяч на кубический сантиметр и больше. Такие плотные облака наблюдаются как очень яркие туманности. Концентрация атомов в межзвездном пространстве между облаками по крайней мере в сотню раз меньше, чем в облаках. Концентрации атомов в облаках межзвездного газа, где водород не ионизован (зоны Н I), с большой надежностью находятся из анализа ультрафиолетовых линий поглощений этого газа в спектрах звезд, получаемых на орбитальных астрономических обсерваториях. В частности, по спектрограммам, полученным на спутнике «Коперник», можно сделать количественный химический анализ межзвездной среды. Для исследовавшихся таким образом облаков, проектирующихся на сравнительно близкие к нам звезды, концентрация водорода оказалась порядка нескольких сотен на кубический сантиметр.