Леденящие звезды. Новая теория глобальных изменений климата - Свенсмарк Хенрик. Страница 28
Это своевременное вмешательство атмосферных химиков никого не обрадовало больше, чем физика элементарных частиц Джаспера Киркби, сотрудника ЦЕРНа в Женеве. Когда в декабре 1997 года Колдер читал в ЦЕРНе лекцию об обнаруженной Свенсмарком связи между космическими лучами и облаками, Киркби был среди слушателей. Лекция возбудила его любопытство, и он, отправляясь с семьей на Рождество в Париж, в гости к сводной сестре, взял с собой сборник научных трудов. И пока остальные ходили по магазинам, Киркби изучал публикации. В итоге он убедился, что открытие Свенсмарка действительно было очень интересным.
Поскольку совпадения вариаций космических лучей и колебаний облачного покрова ничего не говорили о существующих здесь причинно-следственных связях, Киркби задумался над тем, как можно было бы установить эти связи и найти механизм, инициирующий образование облаков. И хотя физика высоких энергий не занимается вопросами климата, космические лучи определенно входят в область ее интересов: физики, работающие с элементарными частицами, в изобилии создают искусственные космические лучи с помощью своих ускорителей. Посреди праздников в Париже Киркби нашел время, чтобы набросать план эксперимента. По его замыслу, следовало воссоздать атмосферные условия и, соответственно, условия образования облаков в специально оборудованной камере, воздействовать на нее пучком частиц, разогнанных в церновском ускорителе, и измерить получившийся эффект.
Мало кто знал тогда, но, помимо фундаментальной науки, Джаспер Киркби занимался исследованиями окружающей среды. Если бы он нашел возможную причину изменений климата, для его группы это была бы особая возможность зарекомендовать себя с лучшей стороны и продвинуть исследования на более профессиональный уровень. Подавая в камеру строго отмеренные дозы водяного пара и следовые количества определенных соединений — двуокиси серы, аммиака, азотной кислоты, — ученые намеревались проследить физические и химические эффекты в серии тщательно спланированных опытов и увидеть, сможет ли входящий пучок частиц повлиять на образование ядер облачной конденсации. Из первых букв остроумного названия эксперимента «Cosmics Leaving OUtdoor Droplets» (буквально: «Космические лучи оставляют после себя капельки под открытым небом») Киркби составил акроним — «CLOUD» [53].
Он принялся собирать команду. За два года Джаспер Киркби собрал больше пятидесяти метеорологов, экспертов по солнечно-земной физике и физике элементарных частиц из семнадцати институтов Европы и США. Свенсмарк тоже был среди них. Он отчаялся найти в Дании средства для собственного эксперимента и был рад присоединиться к группе специалистов, набираемой Киркби.
Был здесь и Маркку Кулмала из Хельсинки, бросивший Свенсмарку спасательный круг в море критики в Эльсиноре. Как и многие другие в их команде, он все еще не был убежден результатами Свенсмарка и не считал, что космические лучи прямо участвуют в образовании облаков. В то время Кулмала предпочитал объяснять нуклеационные взрывы тем, что в реакциях участвуют и другие молекулы, помимо серной кислоты и водяного пара. Но, как и остальные, он не смог отказаться от возможности проверить идею ионного ядрообразования в ходе беспрецедентного исследования в области атмосферной химии.
Киркби нашел нишу для своего проекта «CLOUD» в опытном зале церновского протонного синхротрона. Главное место в эксперименте отводилось диффузионной камере полуметрового диаметра, куда синхротрон должен был подавать регулируемые порции частиц высоких энергий. Некоторые члены группы, приехавшие из Хельсинкского университета, Миссури-Ролла [54] и Венского университета, ранее уже имели дело с такими камерами и получали положительные результаты. Используя наработанный ими опыт, инженеры ЦЕРНа смогли построить большую пузырьковую камеру для изучения следов частиц.
Самые современные приборы, располагавшиеся вокруг диффузионной камеры, предназначались для того, чтобы следить за событиями, вызываемыми пучком частиц из ускорителя. Капли влаги, образующиеся в камере, должны были рассеивать свет и тем самым заявили бы о своем присутствии. Фотографии предполагалось делать с помощью высокоскоростной 3D-камеры, используя технологию, которую впервые применили для наблюдения за солнечными затмениями.
Атомы, молекулы и ионы различных видов и масс, присутствующие в воздухе, должны были попадать в поле зрения сразу нескольких приборов. Три разных масс-спектрометра предназначались для того, чтобы идентифицировать их путем точного измерения молекулярных весов. Еще один прибор измерял подвижность ионов и должен был поведать о том, как они взаимодействуют с молекулами воздуха и других веществ, участвующими в эксперименте.
Чего не хватало заявке на проведение эксперимента, так это осмысленной поддержки со стороны специалистов по химии атмосферы, теоретических обоснований той роли, которую космические лучи должны играть в атмосферных процессах, — ничем иным, кроме предположений, сделанных Франком Расом еще в 1980-е годы, атмосферные химики не располагали. Уточненный сценарий Фанцюнь Юя и Ричарда Турко, объясняющий тот неожиданный нуклеационный взрыв близ берегов Панамы, подоспел как раз вовремя. К апрелю 2000 года каждый пункт заявки был тщательно проработан. Заключительные слова этого текста, в сущности, повторяли те мысли Свенсмарка, с которых и началась вся работа.
«Более ста лет назад Ч. Т. Р. Вильсон изобрел диффузионную камеру, чтобы исследовать феномен погоды. Его изобретение стало необходимейшим инструментом для физики элементарных частиц. Сейчас колесо истории повернулось, и мы возвращаемся назад, к идее Вильсона, дабы исследовать вероятность того, что атмосфера Земли действует подобно большой диффузионной камере, в которой эхом отдаются причуды Солнца» [55].
Когда заявка попала на рассмотрение к двум ведущим метеорологам, ответ оказался неутешительным. Один лауреат Нобелевской премии поднял на смех доказательства Свенсмарка и счел необходимым обратить внимание ЦЕРНа на то, что эти доводы используются лишь как оружие в научно-политических спорах, ведущихся на тему глобального потепления. Группа ученых возмутилась: это не могло быть научным аргументом в пользу или против их проекта. Когда ученые обсуждали рецензию между собой, они отметили, что в высказанных возражениях нет логики:
«Если ситуация настолько неприемлема, насколько это изображается [рецензентом], разве не было бы важно — тем более важно! — показать, что гипотеза Свенсмарка ошибочна?» [56]
Другой рецензент вдавался в технические детали и выражал сомнение в том, что ученые смогут в своем опыте воссоздать условия реальной атмосферы. Здесь специалистам Киркби пришлось самым тщательным образом отвечать на все возражения, пункт за пунктом. Они также решили подчеркнуть, что цель эксперимента заключалась не в том, чтобы доказать, будто облака реагируют на колебания космических лучей, а в том, чтобы лишь посмотреть, возможно ли это вообще.
Наиболее весомым техническим возражением было то, что пробный запуск эксперимента слишком ограничен во времени. «Точкам», представляющим собой лишь зародыши капелек, требуется много часов, чтобы сформироваться и вырасти. При пробном запуске капельки довольно быстро осядут на стенки диффузионной камеры — на это потребуется около 24 часов, — и эксперимент закончится. Группа учла замечание, присоединив к большой реакционной камере два дополнительных резервуара (причем с тефлоновыми стенками), объем которых в шестьдесят раз превышал объем диффузионной камеры. Теперь химические реакции могли спокойно продолжаться несколько дней и даже неделю.