Леденящие звезды. Новая теория глобальных изменений климата - Свенсмарк Хенрик. Страница 36
Основное место научной деятельности Вейзера — университет Оттавы, но он также работал в Рурском университете в Бохуме (Германия). Вейзер собрал большую коллекцию ископаемых раковин, хозяева которых обитали в тропических океанах в течение последних 550 миллионов лет, и подсчитал в них количество атомов тяжелого кислорода. Согласно этим данным, температура поверхностного слоя морской воды в тропиках поднималась и падала приблизительно на 4 градуса Цельсия, более или менее идя в ногу с переходами от условий «парника» к «леднику» и наоборот.
В 2000 году совместно со своими коллегами из Льежа Вейзер понял, почему его данные противоречат широко распространенному поверью, будто содержание углекислого газа в атмосфере повинно в температурных колебаниях. Это особенно ясно, если обратиться к оледенениям, случившимся 150 и 450 миллионов лет назад. Концентрация двуокиси углерода в воздухе была высока, и морским температурам следовало быть значительно выше тех, о которых рассказывает коллекция раковин Вейзера. Однако ракушки настаивали на том, что температура меняется циклично и что цикл этих колебаний составляет примерно 135 миллионов лет. Температурный цикл Вейзера был очень похож на цикл Шавива в 143 миллиона лет. Готовя к публикации в 2003 году расширенную версию своей работы о спиральных рукавах, Шавив включил туда и графики Вейзера.
Затем астрофизик и геолог поняли, что, объединив свои усилия, они могли бы более точно подсчитать, насколько сильно космические лучи влияют на климат. Ученые совместно написали провокационную статью под названием «Небесные силы как главный фактор фанерозойского климата?», которую Геологическое общество Америки (ГОА) опубликовало в весьма популярном среди геологов журнале — «ГОА сегодня». Помимо того, что они представили свои собственные данные о связи космических лучей и климата, ученые рассказали и о результатах, полученных Свенсмарком. Возможно, тогда многие читатели впервые услышали о датском ученом и его исследованиях.
Шавив и Вейзер пришли к заключению, что связь между климатом фанерозоя и космическими лучами не подлежит сомнению, в то время как влияние двуокиси углерода на климат древности должно быть меньше, чем обычно заявляют. Они внимательно изучили геологические данные, обращая внимание на несоответствия между уровнями двуокиси углерода и морскими температурами, и сделали вывод, что в будущем повышение температуры, связанное с удвоением содержания двуокиси углерода, будет намного ниже, чем предсказывала Межправительственная группа экспертов по изменению климата. И в одну секунду Шавив и Вейзер оказались персонами нон грата.
Спустя шесть месяцев группа из одиннадцати ученых яростно напала на их ересь, опубликовав статью в геофизическом журнале «Эос». Ведущим автором был Штефан Рамшторф из Потсдамского института климатических исследований. Статья начиналась с того, что ставила под сомнение влияние космических лучей на климат, опираясь при этом на возражения, уже успевшие устареть. И поскольку критики даже собственную статью не прочитали внимательно, Шавив и Вейзер легко опровергли многие пункты, просто повторив то, что они написали изначально.
Споры были слишком запутаны и темны, чтобы излагать их здесь, но один пример даст вам почувствовать их аромат. Рамшторф и его собратья по критике предположили, что данные о морских температурах были подтасованы, чтобы выделить колебания, совпадающие с вариациями космических лучей. Здесь приведено опровержение Шавива и Вейзера, поставившее критиканов на место: «Рассчитанные тренды температур… были уже опубликованы Вейзером и др. в 1999 и 2000 годах, при полном неведении относительно будущей работы Шавива» [68].
«ГОА сегодня» выпустило более обоснованный комментарий, озаглавив его: «СО2 как главный фактор фанерозойского климата». Авторами выступили пять ученых под руководством Даны Ройера из университета штата Пенсильвания. Они утверждали, что график температур, основанный на содержании тяжелого кислорода в древних отложениях карбоната, должен быть уточнен с поправкой на кислотность морской воды в те времена. Тогда, как предполагали авторы статьи, связь между температурами и двуокисью углерода станет намного очевиднее:
«Колебания потока космических лучей могут воздействовать на климат, но не они играли ведущую роль в течение многих миллионов лет» [69].
Решайте сами, кто прав. Уровень двуокиси углерода опускается и поднимается только дважды за 550 миллионов лет, в то время как на графиках космических лучей вы можете увидеть по четыре всплеска и падения. И так как было четыре основных холодных и четыре теплых периода, модель безоговорочно поддерживает Шавива и Вейзера, когда они утверждают, что космические лучи — главная движущая сила климата. Но ледниковые периоды были не одинаковы по своей мощности, и, следовательно, помимо космических лучей действовали и иные силы.
Попытку прекратить разногласия о том, что важнее — космические лучи или углекислый газ, — предпринял Клаус Вальман из Института морских исследований ГЕОМАР в Киле (Германия). Он написал в журнал «Геохимия Геофизика Геосистемы» статью, где заявил, что не мог бы воспроизвести диаграммы температур с поправкой на кислотность без добавления охлаждающего эффекта космических лучей. С другой стороны, по его словам, двуокись углерода играет значительную роль в усилении или ослаблении изменений климата:
«Теплые периоды (кембрий, девон, триас, меловой) характеризуются низким уровнем космических лучей. Холодные периоды, от позднего каменноугольного до раннего пермского и поздний кайнозойский [следовательно, настоящее время], отмечены высоким притоком космических лучей и низким значением двуокиси углерода. […] Два умеренно холодных периода, совпадающие с ордовикско-силурийской и юрско-раннемеловой эпохами, характеризуются и высоким содержанием двуокиси углерода, и большим количеством заряженных частиц, так что парниковое потепление компенсировалось охлаждающим воздействием низких облаков» [70].
Как сильно влиял углекислый газ на климат далекого прошлого? Когда мы видим провалы в графиках, 300 миллионов лет назад и в сегодняшней ледниковой эре, количество двуокиси углерода в воздухе составляет всего лишь несколько сотен частиц на миллион, но на подъемах оно вырастает до 5000 и 2000 частиц на миллион. Если захотите перевести это на язык, используемый для современного описания изменений климата, вам придется спросить, насколько поднимутся температуры, если содержание двуокиси углерода возрастет с 280 до 560 частиц на миллион — то есть увеличится в два раза по сравнению с уровнем, существовавшим до промышленной революции? Межправительственная группа экспертов по изменению климата полагала, что цифры будут в пределах от 1,5 до 4,5 градуса Цельсия.
Первоначально Шавив и Вейзер, основываясь на данных за 500 миллионов лет, предполагали, что чувствительность климата к двуокиси углерода могла составить 0,5 градуса Цельсия. Однако они согласились с тем, что следует откорректировать цифры с учетом кислотности морской воды, хотя и полагали, что Дана Ройер с коллегами переоценивают ее влияние. Шавив и Вейзер также подчеркивали, что подсчет атомов тяжелого кислорода, используемый для определения температуры, должен быть скорректирован с поправкой на количество льда в мире, потому что если образуются ледовые щиты, то в морской воде остается больше тяжелого кислорода. Шавив и Вейзер пересмотрели свою оценку чувствительности климата к двуокиси углерода, и в этот раз она составила 1,1 градуса Цельсия.
Их оценка совпала с мнением знаменитого метеоролога Ричарда Линдзена из Массачусетского технологического института о сегодняшнем состоянии атмосферы. Линдзен неоднократно высказывался об умеренном влиянии на климат двуокиси углерода. Как он объяснил в выступлении перед английской Палатой лордов в 2005 году: