Мир астрономии. Рассказы о Вселенной, звездах и галактиках - Мухин Лев Михайлович. Страница 25
Температура этих звезд оказалась очень низкой (по звездным меркам) — всего 2000 К. В атмосферах многих холодных звезд есть вода и окись углерода. Около некоторых звезд, и молодых и старых, существуют пылевые оболочки, а совсем недавно было установлено, что есть звезды, и среди них одна из самых близких к нам — Вега, окруженные пылевыми дисками. Возможно, эти образования и есть знаменитые протопланетные туманности. Быть может, по соседству с нами вскоре отыщут звезды, имеющие планетные системы!
С помощью ИК-астрономии были открыты протозвездные объекты и загадочные тела промежуточной массы между звездами и планетами. Один из них имеет массу в десять раз большую, чем Юпитер, но соответственно меньшую, чем наш желтый карлик — Солнце.
Астрофизики, используя возможности ИК-астрономии, впервые получили изображение центра нашей Галактики. Была изучена структура этого района, и удалось обнаружить, что в центре нашей звездной системы расположен точечный источник инфракрасного излучения. Но что это такое? Сегодня мы не можем ответить на этот вопрос. Мир астрономии поистине неистощим на сюрпризы.
Новые сведения об окружающем мире идут не только с длинноволнового конца спектра. Коротковолновый диапазон в этом смысле старается «не отставать» от радиоволн и ИК-излучения. Но здесь уже нужно учесть то обстоятельство, что научную информацию ученые получают в этом диапазоне длин волн только с больших высот и из космоса: атмосфера задерживает, «режет» коротковолновую, высокоэнергичную часть спектра.
С одной стороны, это, безусловно, хорошо. Хорошо хотя бы в том смысле, что если бы ультрафиолетовое излучение Солнца могло достигнуть поверхности Земли, то очень скоро наша планета превратилась бы в безжизненную пустыню. Ведь ультрафиолетовое излучение Солнца губительно для всего живого. Но так как наша планета имеет атмосферу, а в ней есть слой озона, поглощающий жесткий ультрафиолет, то мы можем жить спокойно, а астрономы должны использовать высотные ракеты и спутники для исследования различных объектов в коротковолновой части спектра — ультрафиолете, рентгене и гамма-диапазоне.
Ультрафиолетовое излучение особенно заметно в спектрах горячих молодых звезд, имеющих высокую температуру. Ну, и конечно же, наше Солнце является мощнейшим источником ультрафиолета, поскольку эта звезда ближе всего к нам. Я не буду много говорить сейчас об исследовании в ультрафиолетовой области спектра. Укажу лишь на один замечательный пример.
В мире звезд существуют так называемые белые карлики — маленькие, горячие звезды очень высокой плотности. Если бы нам удалось зачерпнуть вещество белого карлика чайной ложкой и взвесить его, стрелка весов остановилась бы около деления 5 тонн. Так вот, теория белых карликов была создана уже давно, но они очень трудно наблюдаемы в видимом диапазоне из-за малых размеров. До 1975 года по этой причине не проводилось прямых измерений размеров белых карликов. Но когда на спутнике «Коперник» были проведены измерения в ультрафиолете, оказалось, что максимум излучения Сириуса-Β лежит в области 1100 А, что соответствует температуре поверхности звезды около 30 000 К. Теперь по известной для Сириуса-Β видимой звездной величине можно было вычислить радиус звезды. Он оказался равным 4200 километрам, меньше, чем радиус Земли. Интересно, что последующие измерения дали более низкую цифру — 26 000 К. Но система Сириуса светит еще и в рентгене, и этой температуры не хватает для объяснения рентгеновского излучения. Пока причина этого неизвестна.
Если бы мы «закрыли» все участки спектра, кроме ультрафиолетового, ночное небо выглядело бы совершенно иначе, чем сейчас. На нем наблюдалось бы много очень ярких туманностей солидных размеров. Например, одна из них заняла бы все созвездие Ориона. Интересно выглядело бы в ультрафиолете Солнце: его внешние части были бы гораздо ярче диска звезды.
Отправимся теперь в область самой коротковолновой астрономии — рентгеновскую и гамма. Здесь уже телескопы совсем не похожи на оптические или радио. Это специальные физические приборы для регистрации жестких, то есть обладающих высокой энергией квантов, излучений в рентгеновском и гамма-диапазоне. Ясно, что кванты с высокой энергией могут рождаться в физических процессах с большим энерговыделением. Поэтому окно рентгеновской и гамма области спектра является окном в астрофизику высоких энергий. В первую очередь следует отметить открытие мощных рентгеновских источников — нейтронных звезд в тесных двойных системах. Мощность этих источников в сотни тысяч раз больше мощности Солнца, также излучающего в рентгеновском диапазоне.
Рентгеновские лучи принесли нам информацию о присутствии в межгалактическом пространстве внутри скоплений галактик горячей плазмы с температурой сто миллионов градусов. Мощными источниками рентгеновского излучения являются вспышки сверхновых, процессы «каннибализма» в мире галактик, вспыхивающие нейтронные звезды — барстеры.
Читателю не надо бояться новых загадочных терминов. Мы просто договоримся сейчас о том, что, когда разговор пойдет о мире галактик, нам станет понятно, что такое «каннибализм», беседуя о звездах, мы узнаем о барстерах и т. д. Сейчас же я хочу еще раз повторить, что наблюдения рентгеновского излучения в астрономии всегда связаны с высокими энергиями.
Рентгеновская астрономия приносит сюрпризы и неожиданности. В 1983 году советские и японские спутники зарегистрировали «внезапную смерть» источника Геркулес Х-1 в рентгеновском диапазоне. Почему? На очередной вопрос, поставленный природой перед астрофизиками, ответа пока нет.
Очень интересен рентгеновский источник Лебедь Х-1, который уже более десятка лет будоражит воображение астрофизиков. Наблюдения как будто не противоречат гипотезе о черной дыре, входящей в состав двойной звездной системы Лебедя, но… скажем прямо, имеются и альтернативные объяснения наблюдаемой картины. Конечно же, хотя на счету рентгеновской астрономии колоссальные достижения, открытие черной дыры было бы ее триумфом. Но пока триумф откладывается.
Здесь не следует забывать, что рентгеновская астрономия очень молода — лишь в 1970 году был запущен спутник «Ухуру», с помощью которого были сделаны фундаментальные открытия, например, нашли рентгеновские звезды — тесные двойные системы, где одним из компаньоном является нейтронная звезда.
Еще моложе гамма-астрономия. Лишь в 1972 году был запущен специализированный спутник для изучения гамма-излучения.
Сразу же уместно обсудить вопрос о том, какие процессы и объекты на небе могут быть источниками космического гамма-излучения? Таких источников несколько. Гамма-излучение может возникать, если энергичные протоны, входящие в состав космических лучей, или релятивистские электроны сталкиваются с ядрами межзвездных атомов или молекул. Релятивистские электроны могут порождать гамма-кванты при взаимодействии с квантами электромагнитного излучения различной энергии, заполняющими межзвездное пространство, и при движении в магнитных полях (синхротронное излучение). Поэтому огромные холодные газопылевые облака, заполняющие межзвездное пространство, обязательно должны были быть источниками гамма-излучения: ведь плотность вещества в них больше, чем в обычном межзвездном пространстве, и вероятность взаимодействия протонов космических лучей с содержимым облака соответственно повышается.
Изображение остатка сверхновой Кассиопеи Α в гамма-диапазоне.
Так оно и оказалось. Некоторые максимумы гамма-излучения на небе удалось отождествить с облаком в созвездии Орион, где происходит рождение звезд. Это облако находится сравнительно недалеко от нас: около 500 пс. Еще ближе (150 пс) к нам звезда ρ Змееносца. Около нее также расположено облако — источник гамма-излучения. На основе результатов спутниковой гамма-астрономии удалось даже построить «гамма-карту» части нашей Галактики, поскольку гамма-излучение в Галактике подчеркивает ее крупные детали.