Очерки о Вселенной - Воронцов-Вельяминов Борис Александрович. Страница 85
Очень много для понимания природы полярных сияний дали обширные систематические исследования их, проведенные во время Международного геофизического года (МГГ), а также исследования при помощи искусственных спутников Земли и геофизических ракет.
Магнитное поле Земли в общем похоже на поле намагниченного железного шара с силовыми линиями, выходящими из одного магнитного полюса и входящими в другой. В связи с этим дуги полярных сияний вытягиваются вдоль геомагнитных параллелей, а их лучи - вдоль геомагнитных силовых линий.
Сияния в области геомагнитных полюсов, аморфного вида, производятся очень энергичными электронами, приходящими непосредственно от Солнца, но отклоняемыми в своем движении магнитным полем Земли. Сияния в области наибольшей их повторяемости - в области полярных кругов - возбуждаются электронами с энергией 10 кэв и меньше, которые не могут прийти прямо от Солнца, а приобрели большую скорость, странствуя в магнитном поле Земли, хотя они и не принадлежат к радиационным поясам Земли. Здесь же происходят и сияния, вызванные протонами с энергией в 1 1/2 - 2 кэв, т. е. с такой же, какой обладают протоны солнечного ветра. Протоны эти попадают в зону обтекания геомагнитного поля, а оттуда врываются в стратосферу. Сияния в виде красных дуг на высотах около 350 км создаются ближе к земному экватору протонами небольших энергий из состава солнечного ветра. Детали проникновения корпускул солнечного ветра в стратосферу и их «приключения» в пути еще подлежат выяснению.
Солнечный ветер, вызывая магнитные бури и полярные сияния, возмущая земную ионосферу, влияет на радиосвязь на коротких волнах, а быть может, как считал А. Л. Чижевский, оказывает заметное влияние и на живые юрганизмы. Поэтому изучение солнечного ветра и связанных с ним явлений не безразлично для человеческой практики, особенно в связи с запусками человека в Космос.
Поскольку солнечный ветер связан с активными областями на Солнце, существующими длительное время, а скорость вращения Солнца и скорость корпускулярных потоков известны, наступление магнитных бурь и сильных полярных сияний в некоторой степени удается предсказывать заранее.
Глава 7. Звезды - далекие Солнца
Объяснить необъяснимое
Открылась бездна, звезд полна,
Звездам числа нет, бездне - дна.
Так писал великий ученый и ггоэт, чуткий ценитель красоты природы Михайло Ломоносов. Не в ущерб ему, приведем еще одно высказывание о звездах, принадлежащее, однако, менее авторитетному лицу. «Коллективный автор» Козьма Прутков изложил один анекдот о Декарте так:
«Однажды, когда ночь покрыла небеса невидимою своею епанчею, знаменитый философ Декарт, сидя на ступеньках домашней своей лестницы, некий прохожий подстуцил к оному, с превеликим вниманием на мрачный горизонт смотревшему, с вопросом: «Скажи, мудрец, сколько звезд на небе сем?» - «Мерзавец! - ответствовал сей: - никто необъятного объять не может...»
Смысл всех этих слов тот, что звездам, видимым на небе, «несть числа», а между тем, если говорить о звездах, видимых невооруженным глазом, то они все сочтены давным-давно. Эта задача не необъятна. Мы вполне можем «объять» множественность звезд, она лишь кажется необъятной.
Присмотритесь к звездному небу, разыщите на нем с помощью звездной карты созвездия, и вы скоро убедитесь, как легко ориентироваться на небе, держать на учете все звезды, видимые невооруженным глазом. Их всего около 6000, а сразу над горизонтом их видно только около 3000. Если мы говорим «около», то лишь потому, что острота зрения и прозрачность воздуха бывают различны. В списки занесены и помечены на картах не только все эти звезды, но и множество более слабых.
С уменьшением блеска звезд число их растет, и даже простой их счет становится все более затруднительным.
Так сказать, «поштучно» сосчитаны и занесены в каталоги, а также на карты все звезды ярче 11-й звездной величины. Число звезд, более слабых, мы тоже знаем, но уже не так точно, но это и не так важно. Мы поступаем с ними, как лесничие с деревьями в лесах, не подсчитывающие каждое дерево при учете запасов леса. На небольших типовых площадках определенного размера они подсчитывают число деревьев и умножают их затем на число таких площадок, содержащихся в площади, занятой лесом. Мы поступаем со звездами подобно этому.
В результате подсчет числа звезд, ярче данной предельной звездной величины, можно представить следующей табличкой:
Итак, мы держим на строгом учете около миллиона звезд, а всего доступно нашему наблюдению около двух миллиардов звезд. Числа - внушительные, но «объять» их можно.
Светимости звезд
Где-то в море в ночной тьме тихо мерцает огонек, и если бывалый моряк не объяснит вам, что это, вы часто и не узнаете: то ли перед вами фонарик на носу проходящей шлюпки, то ли мощный прожектор далекого маяка. В том же положении в темную ночь находимся и мы, глядя на мерцающие звезды. Их видимый блеск зависит и от их истинной силы света, называемой светимостью, и от их расстояния до нас. Только знание расстояния до звезды позволяет подсчитать ее светимость по сравнению с Солнцем. Так, например, светимость звезды, в действительности в десять раз менее яркой, чем Солнце, выразится числом 0,1.
Истинную силу света звезды можно выразить еще и иначе, вычислив, какой звездной величины она бы нам казалась, если бы она находилась от нас на стандартном расстоянии в 32,6 светового года, т. е. на таком, что свет, несущийся со скоростью 300 000 км в секунду, прошел бы его за это время. Десятая часть этого расстояния (т. е. расстояние в 3,26 светового года) принимается специалистами-астрономами за единицу для выражения межзвездных расстояний и называется парсеком. Ее назвали так потому, что с этого расстояния угол, под которым виден радиус земной орбиты, перпендикулярный к лучу зрения (этот угол называется параллаксом), составляет в точности одну секунду дуги. Парсек в 206 265 раз больше расстояния от Земли до Солнца, т. е. астрономической единицы, так что
1 парсек=3,26 светового года=206265 астрономических единиц=3,083Х1013 км.
На стандартном расстоянии в 10 парсек, или 32,6 светового года, Солнце показалось бы нам звездой 5-й звездной величины, т. е. не особенно хорошо видимой невооруженным глазом даже в безлунную ночь. Звездная величина светила на этом стандартном расстоянии называется абсолютной звездной величиной.
Блеск звезд, как и всякого источника света, изменяется обратно пропорционально квадрату расстояния. Этот закон позволяет вычислять абсолютные звездные величины или светимости звезд, зная расстояния до них.
Пусть для примера звезда 5-й видимой величины находится от нас на расстоянии в 40 парсек. Тогда на стандартном расстоянии в 10 парсек она была бы к нам вчетверо ближе и ее видимый блеск возрос бы в 42, т. е. в 16 раз. Но 16 - это почти точно (2 1/2)3, т. е. звездная величина звезды стала бы на три звездные величины меньше. Вместо 5-й она стала бы 2-й звездной величины, была бы на три звездные величины ярче Солнца (М0=+5). Следовательно, ее светимость равна 2 1/2 Х 2 1/2 Х 2 1/2=(2 1/2)3=16. Таким образом, эта звезда 5-й звездной величины в действительности в 16 раз ярче Солнца. Абсолютную величину звезды М можно легко вычислить по ее видимой звездной величине т и расстоянию D в световых годах при помощи формулы
М=(m+7 1/2)-5lgD.
Когда расстояния до многих звезд стали известны, то мы смогли вычислить их светимости, т. е. смогли как бы выстроить их в одну шеренгу и сравнивать друг с другом в одинаковых условиях. Надо сознаться, что результаты оказались поразительными, поскольку раньше считали все звезды «похожими на наше Солнце». Светимости звезд оказались удивительно разнообразными. Приведем только крайние примеры светимости в мире звезд.